
ShuffleDog: Characterizing and Adapting
User-Perceived Latency of Android Apps

Gang Huang,Member, IEEE, Mengwei Xu, Felix Xiaozhu Lin, Yunxin Liu, Senior Member, IEEE,

Yun Ma, Student Member, IEEE, Saumay Pushp, and Xuanzhe Liu,Member, IEEE

Abstract—Numerous complains have been made by Android users who severely suffer from the sluggish response when interacting

with their devices. However, very few studies have been conducted to understand the user-perceived latency or mitigate the UI-lagging

problem. In this paper, we conduct the first systematic measurement study to quantify the user-perceived latency using typical

interaction-intensive Android apps in running with and without background workloads. We reveal the insufficiency of Android system in

ensuring the performance of foreground apps and therefore design a new system to address the insufficiency accordingly. We develop

a lightweight tracker to accurately identify all delay-critical threads that contribute to the slow response of user interactions. We then

build a resource manager that can efficiently schedule various system resources including CPU, I/O, and GPU, for optimizing the

performance of these threads. We implement the proposed system on commercial smartphones and conduct comprehensive

experiments to evaluate our implementation. Evaluation results show that our system is able to significantly reduce the user-perceived

latency of foreground apps in running with aggressive background workloads, up to 10x, while incurring negligible system overhead of

less than 3.1 percent CPU and 7 MB memory.

Index Terms—Measurements, systems, cross-layer design, scheduling

Ç

1 INTRODUCTION

FAST, responsive, and smooth interaction on mobile apps
has become a key requirement of mobile users’ experi-

ence. In order to enable various UI metaphors, apps often
adopt continuous user interactions. Examples include touch
gestures such as swipe and pinch, and finger painting on a
touch screen. To continuous user inputs, apps respond with
continuous outputs, e.g., animated screen updates.

Unfortunately, today’s mobile users are often frustrated by
slow system responses and “janky” outputs when interacting
with their devices. A recent study on smartphone perfor-
mance anomalies [1] reveals a high percentage (76 percent) of
UI lagging issues. Looking closer, user experience in interac-
tion is decided by user-perceived latency, i.e., the system latency
perceived by users in how a user’s stimuli to a mobile system
is propagated, processed, and finally presented as the sys-
tem’s response to the user. To the best of our knowledge,
despite the significance of user-perceived latency in ensuring
user experience, very few studies have been conducted to
quantify the user-perceived latency of various mobile apps,

identify the root causes of UI-lagging, and improve the exist-
ingmobile systems to reduce user-perceived latency.

In this paper, we first conduct a quantitative study to
measure the imperfect user-perceived latency of various
typical interactive Android apps such as games. We exam-
ine the performance difference of these apps in running
with and without background workloads. We find that all
the apps significantly suffer from background workloads,
with a up to 12x increase of user-perceived latency against
the normal latency without workloads. The reasons are
because: 1) multiple threads both in user mode and kernel
mode contribute to the user-perceived latency, and 2) those
threads compete with other threads on various system
resources, but 3) the Android OS currently cannot ade-
quately ensure the performance of those threads in manag-
ing the system resources including CPU, I/O, and GPU.

Motivated by these findings, we propose and design a new
system, as called ShuffleDog,1 to reduce user-perceived latency
of Android apps. It consists of two key components. The first
one takes charge of precisely identifying all the delay-
critical threadswhich contribute to the user-perceived latency.
These delay-critical threads include not only the UI thread of
an app, but also other necessary threads of the app as well as
the background services which process user interactions and
can affect screen updates accordingly. Such an identification
task is non-trivial as the threads are found to interact indi-
rectly in various ways. We develop an API-instrument-based
approach to identify proper threads accurately at a low cost.
That approach requires nomodification from apps and thus is
able to support all existing apps. The second key component

� G. Huang, M. Xu, Y. Ma, and X. Liu are with the Key Laboratory of
High Confidence Software Technologies (Peking University), Ministry
of Education, Beijing 100871, China.
E-mail: {hg, xumengwei, mayun, xzl}@pku.edu.cn.

� F.X. Lin is with Purdue University, West Lafayette, IN 47907.
E-mail: xzl@purdue.edu.

� Y. Liu is with Microsoft Research, Beijing 100080, China.
E-mail: yunxin.liu@microsoft.com.

� S. Pushp is with the Korea Advanced Institute of Science and Technology,
Daejeon 34141, South Korea. E-mail: saumay@nclab.kaist.ac.kr.

Manuscript received 12 July 2016; revised 27 Dec. 2016; accepted 8 Jan. 2017.
Date of publication 11 Jan. 2017; date of current version 29 Aug. 2017.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMC.2017.2651823

1. To request the source code of ShuffleDog, please contact the corre-
sponding author Xuanzhe Liu via xzl@pku.edu.cn.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 10, OCTOBER 2017 2913

1536-1233� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:23:59 UTC from IEEE Xplore. Restrictions apply.

of ShuffleDog is managing system resources to provide better
services to all the identified threads. We apply a higher prior-
ity to those threads in allocating and scheduling various
resources. Specifically, we improve the existing CPU, I/O,
and GPU schedulers of Android OS to ensure the perfor-
mance of these “need-to-be-prior” threads. We design our
new schedulers carefully so that we are able to reduce the
user-perceived latencywithout compromising the overall sys-
temperformance.

We implement ShuffleDog on commercial Android smart-
phones and conduct comprehensive evaluations. Experi-
mental results show that ShuffleDog is able to significantly
reduce the user-perceived latency of various apps, up to
10 times, even under very aggressive and heavy back-
ground workloads. The impact on overall system perfor-
mance is quite minor, as no more than 7 percent decrease
on the performance of background workloads. ShuffleDog is
able to accurately identify necessary threads without any
false positives and has only one type of false negatives. The
system overhead of our implementation is small, with less
than 3.1 percent CPU usage and 7 MB memory usage.

This paper makes the following main contributions:

� The first measurement study to quantify user-per-
ceived latency and identify the root causes of
imperfect user-perceived latency with background
workloads. (Section 2)

� A thread tracker that is able to locate all relevant
threads that contribute to user-perceived latency
accurately with very low system overhead. (Section 4)

� A system resource manager which ensures the per-
formance of the necessary threads through better
CPU, I/O, and GPU scheduling. (Section 5)

� A prototype implementation on commercial smart-
phones (Section 6) and comprehensive evaluations
to demonstrate the effectiveness of our approach
(Section 7).

The rest of the paper is organized as follows. We describe
the architecture of ShuffleDog in Section 3. We discuss the
limitations in Section 8. We survey the related work in Sec-
tion 9 and conclude in Section 10.

2 QUANTIFYING USER-PERCEIVED LATENCY

In this section, we first describe how user-perceived latency
is determined by the user-input processing in Android OS.
Then we present a quantitative study to measure the user-
perceived latency of typical interactive apps in running
with and without background workloads, respectively. We
demonstrate that Android fails to guarantee a low user-per-
ceived latency and we discuss the root causes.

2.1 User-Perceived Latency in Android System
Fig. 1 describes a general work flow on how a user interaction
is processed in Android OS. A touch event from a touch stim-
ulus is generated by the touch-screen hardware as the user’s
finger moves on the touch screen. Such a touch event, in the
form of a hardware event, is subsequently read by a kernel
driver by means of interrupts(u). The kernel formats the raw
event and then sends the event to the user space through the
device file interface(v). In the user space, the Input Reader
takes charge of pre-processing the input event (during which
the event can get deferred or batched with others(w)) and
Input Dispatcher determines the destination app to which the

event is sent in the form of an OS touch event through Inter-
Process Communication (IPC)(x).2 The app gets the touch
input (possibly together with other inputs), processes the
input, and generates one or more graphic surfaces(y). The
app sends the graphic surface(s) to SurfaceFlinger3 that is
responsible for surface composition, who ultimately submits
the composited frame(s)(z) to the display hardware for
presentation.

From the preceding work flow, it can be observed that
user-perceived latency is determined by multiple compli-
cated factors. It consists of multiple stages and involves
multiple threads in both kernel and user spaces. Further-
more, the app is treated as a black box in Fig. 1. However,
the app itself may have a complex structure and handles the
interaction events in its own way. In addition, the app may
also need support from system services through asynchro-
nous IPCs, e.g., Location Service, to update the screen UI,
which further complicates the user-interaction processing.

Not surprisingly, background threads can compete with
the foreground apps for various system resources and thus
affect the foreground apps and leads to a longer user-per-
ceived latency. To quantify such impacts, we conduct a
measurement study as follows.

2.2 Measurement Setup
Wemeasure the user-perceived latency of 10 typical apps as
listed in Table 1, including popular apps (Google Map,
WeChat) with millions of Google Play downloads and
famous open source apps (OpenFlappyBird, MuPDF). The
former indicates the problem identified in this section is
universal, and the latter enables us to look deeper into the
root causes of this problem. Also, these apps are representa-
tive in terms of diverse system-resource usage. For example,
MuPDF is CPU-intensive in computing the pixels, RAR is I/
O-intensive in accessing disk to compress files, and games
are GPU-intensive for graphic rendering. For each of them,
we select a typical interactive behavior, and use a proper
way to measure the user-perceived latency. For example,
we can simply extract activity start latency from Activity-
Manager4 for Google Map and Gmail. For the open-source
OpenFlappyBird (it is based on AndEngine5) and MuPDF, we
instrument these apps to trace the key timestamps of each

Fig. 1. Processing of user inputs in the android OS.

2. Input Reader and Input Dispatcher are system daemons in
Android OS and responsible for reading, filtering, pre-processing user
events and dispatching them from kernel to apps.

3. SurfaceFlinger is a vital system service in Android system,
responsible for composing all the graphic layers to screen.

4. A framework module who interacts with the overall activities
running in the system.

5. A popular open-source game engine in Android platform.

2914 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 10, OCTOBER 2017

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:23:59 UTC from IEEE Xplore. Restrictions apply.

user action and calculate the user-perceived latency. For
games like Furious Racing, we use the Adreno Profiler [2] to
get the drawing time of each frame.

We measure the performance of the apps in running with
and without background workloads, respectively. Table 2
shows the background workloads involved in the study.
Some of these workloads are implemented by us (i.e., CPU-
Generator, IOGenerator, and GPUGenerator), and others are
real-world workloads (i.e., CPUFilter, GPUFilter, and
AppInstall). CPUFilter and GPUFilter are both based on a
test app inside Android framework [3], which is imple-
mented in Renderscript. We have made some modifications
so that they can run as a background service. For IOGenera-
tor, we leverage the Android-version of fio [4], which was
ported from Linux byD. Nguyen et al. [5].

Our experiments are conducted on aNexus 6 smartphone6

runningAndroid 5.0.1 (Lollipop). For each app, we first run it
without any background workload and collect the perfor-
mance data as baseline. Then we run the same app again
with a background workload to compare the difference. We
repeat each experiment for 20 times and present the median
numbers. During the experiments, we turn off unnecessary
hardware components such asWi-Fi, cellular, Bluetooth, and
sensors, and stop unnecessary apps and background serv-
ices. To make the I/O requests actually access the disk, we
also clear the file-system cache before each testing.

2.3 Measurement Results
Table 3 shows the experiment results. We can observe that the
user-perceived latency of the apps is significantly affected by
the background workloads, with an increased latency of
1.3x—12.5x. TakingMuPDF as an example. When users try to
zoom in a page, it takes less than 1 s to display the resized
page in the baseline case. However, adding an image process-
ing workload (CPUFilter) in background, the latency
increases sharply beyond 8 s, which is 12 times compared to
the baseline. For file compression in RAR, the baseline latency
is 3.9 s without any backgroundworkload. Running IOGener-
ator in background adds about 2.0 s delay, which can be obvi-
ously perceived by users. Similarly, if an app is installed to SD
card at the same time, the latency goes to 5.1 s, taking 1.2 s
more time compared to the baseline. Such a delay is undesir-
able as users usually continue to use their phones when

installing an app in background. Another case is checking
recent apps by clicking the “Recents” button, a physical or vir-
tual button in most Android devices. Nowadays, it is very
common that users can launchmultiple apps at the same time
and frequently switch among these apps. Usually, this action
can be completed in around 0.5 s. However, the background
GPUFilter makes the delay to 1 s, and our GPUGenerator
even makes it to 2 s, 3 times longer compared to the baseline.
Such an increased latency can cause severe frustration to
users, especially when they are frequently switching among
multiple apps. The similar observation also exists for game
playing. Without background GPUworkloads, Furious Racing
runs at 60 fps (frames per second), i.e., it takes about 16.7 ms
to draw one frame. However, GPUGenerator can drag down
the frame rate to 28 fps, taking 35.2 ms to render a frame on
average. During the experiments, we can obviously feel that
the game becomes sluggish. Similar to Furious Racing, the
screen-update interval of OpenFlappyBird that we get from
AndEngine is dramatically affected by backgroundGPUwork-
loads. Our GPUGenerator makes the interval almost 4 times
longer compared to the baseline, leading to unacceptable user
experience.

2.4 UI-Lagging Issue and Its Root Cause
Our measurement results show that current Android OS
fails to guarantee the performance of foreground apps in
running with background workloads. The user-perceived
latency can be significantly increased, leading to undesir-
able user experience. Although our measurement study is
conducted using controlled experiments and aggressive
background workloads, this UI-lagging problem is real. For

TABLE 1
A List of Foreground Interactive Applications Used in Our Measurement Study

App App Description Selected Performance Metric

Google Map Map Time to start the application
Messenger Pre-installed text message app Time to start the application and list the recent text messages
Gmail Mail client Time to start the application and list recent incoming emails
SystemUI System utility Time to display recent apps by clicking the “Recents” button
WeChat Instant message app Time to log in and display the messages page
RAR File Compressor Time to compress an image file (10 MB) in SD card
OpenFlappyBird 2D Game Update interval between two frames inside AndEngine
Furious Racing 3D Game Frame time (the reciprocal of frame rate) of screen
MuPDF PDF Viewer Latency of zooming in/out actions, from when user releases fingers to

when the resized page is clearly displayed on screen
ImageViewFlipper Image gallery Time to display 15 image thumbnails from SD card.

TABLE 2
A List of Background Workloads Used in Our

Measurement Study

Workload Workload Description

CPUGenerator Float computations in 5 threads
IOGenerator Using fio to randomly read a 128 MB file

from SD card, job number ¼ 2
GPUGenerator Drawing triangles via OpenGL ES in a

single thread, but not displayed on screen
CPUFilter Keep doing image processing in 5 threads

(filter ¼ intrinsic blend, image size ¼ 1 MB)
GPUFilter Keep doing image processing in 5 threads

(filter ¼ levels vec3 relaxed, image
size ¼ 1 MB)

AppInstall Installing an apk file (20 MB) in SD card

6. We have also carried out our measurement experiments on the
Nexus 5, and the results are quite similar. Due to the space limit, we
only present the results of the Nexus 6 that was a relatively newer and
more powerful smartphone when this paper was written.

HUANG ET AL.: SHUFFLEDOG: CHARACTERIZING AND ADAPTING USER-PERCEIVED LATENCY OF ANDROID APPS 2915

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:23:59 UTC from IEEE Xplore. Restrictions apply.

example, a recent study on smartphone performance anom-
alies [1] reveals a high percentage (76 percent) of UI-lagging
issues. Also, many UI-lagging issues in Android have been
reported online [6], [7], [8], [9], [10], [11], [12], [13].

To further explore the sluggish and unsatisfying user
experiences on Android devices, we have conducted a sim-
ple user survey with 318 Android student volunteers in
China via an online Web sheet. The survey includes only
two questions: i) What’s the price of your phone, and ii) How
often do you encounter UI-lagging issues in using your phone.
The results are reported in Table 4. Overall, 23.6 percent of
the participants complain that they often encounter UI-lag-
ging issues, while 65.1 percent report as sometimes. Only 11.3
percent of the participants claim they are never bothered by
this problem. Considering the price difference, despite that
expensive devices provide a better user experience than the
cheaper ones, they cannot fully mitigate the UI-lagging issue.
Only 4.4 percent of the users with cheap devices (<300 $)
never encountered UI-lagging issues, but 35.7 percent of the
users with expensive devices (>750 $) never encountered UI-
lagging issues. However, 14.3 percent users of expensive
phones (>750 $) still often encountered UI-lagging issues.
Such results evidence that the UI-lagging issue is a real and
widely encountered problem amongAndroid users.

As shown in our measurement results, we believe that
the UI-lagging problem is caused by the insufficient

resource management of Android OS. We then investigated
how Android manages various system resources and found
that Android does not provide enough support to guarantee
the performance of foreground apps. For example, in terms
of CPU scheduling, the UI threads and its child threads are
assigned a high scheduling priority but not all the threads
contributing to the user-perceived latency are assigned with
high priority. In terms of I/O scheduling, despite that the
scheduler can support different priorities, all I/O requests
to SD card are treated as the same priority and thus served
equally. Furthermore, to the best of our knowledge, there
has been no kernel scheduler for GPU so far. Consequently,
due to the multi-threading nature of Android OS, the
threads that contribute to user-perceived latency have to
compete with various threads. If they cannot be served with
enough resources and assigned with a proper priority, users
can perceive a long interaction latency. Such an insufficient
resource management in Android OS motivates us to con-
duct the work of this paper. Next, we present how we opti-
mize the existing system to reduce user-perceived latency.

3 SYSTEM DESIGN OVERVIEW

To reduce user-perceived latency in complex runtime envi-
ronments such as Android, we need to achieve two goals:
i) accurately identify all the threads7 that process user input and
affect user-perceived latency—we call those threads delay-
critical threads, and ii) properly manage system resources and
guarantee the performance of delay-critical threads. Accord-
ingly, as shown in Fig. 2, we design our system, as called
ShuffleDog with two main components, Thread Tracker and
Resource Manager, to realize the two goals, respectively.

In ShuffleDog, we propose two key design principles. The
first one is application-transparent. ShuffleDog need to work
with existing apps without requiring any modifications or
instruments of them. ShuffleDog should automatically iden-
tify the delay-critical threads and provide optimized sup-
ports to guarantee the user-perceived latency. The second
design principle is low overhead. ShuffleDog should be light-
weight and cannot sacrifice the performance of background
apps and services too much. To this end, ShuffleDog is
designed to reduce user-perceived latency without requir-
ing any efforts from developers and users, or compromising
the overall system performance.

Thread Tracker. The Thread Tracker module runs as a sys-
tem service in background. It keeps monitoring the fore-
ground app. It continuously tracks the threads of the
foreground app and their interactions both among them-
selves and with other threads of system services. By analyz-
ing the behaviors of those threads, the Thread Tracker

TABLE 3
Experiment Results where “Ratio” Means How Much Latency

is Lengthened by Background Workloads Compared to
the Baseline without Any Background Workloads

Fore App + Back Workloads Latency Ratio

Google Map (Baseline) 1,266 ms 1.0x
Google Map + CPUGenerator 4,088 ms 3.2x
Google Map + CPUFilter 4,824 ms 3.8x

Messenger (Baseline) 1,673 ms 1.0x
Messenger + CPUGenerator 2,368 ms 1.4x
Messenger + CPUFilter 2,631 ms 1.6x

Gmail (Baseline) 2,217 ms 1.0x
Gmail + CPUGenerator 4,525 ms 2.0x
Gmail + CPUFilter 4,933 ms 2.2x

MuPDF (Baseline) 696 ms 1.0x
MuPDF + CPUGenerator 7,325 ms 10.5x
MuPDF + CPUFilter 8,733 ms 12.5x

WeChat (Baseline) 3.8 s 1.0x
WeChat + IOGenerator 7.9 s 2.1x
WeChat + AppInstall 7.1 s 1.9x

RAR (Baseline) 3.9 s 1.0x
RAR + IOGenerator 5.9 s 1.5x
RAR + AppInstall 5.1 s 1.3x

ImageViewFlipper (Baseline) 878 ms 1.0x
ImageViewFlipper + IOGenerator 1,365 ms 1.6x
ImageViewFlipper + AppInstall 1,252 ms 1.4x

SystemUI (Baseline) 516 ms 1.0x
SystemUI + GPUGenerator 2,218 ms 4.3x
SystemUI + GPUFilter 1,346 ms 2.6x

Furious Racing (Baseline) 16.7 ms 1.0x
Furious Racing + GPUGenerator 35.2 ms 2.1x
Furious Racing + GPUFilter 27.4 ms 1.6x

OpenFlappyBird (Baseline) 16.7 ms 1.0x
OpenFlappyBird + GPUGenerator 74.6 ms 4.5x
OpenFlappyBird + GPUFilter 32.7 ms 2.0x

TABLE 4
Results of Our User Survey with the Survey Question: “How

Often Do You Encounter UI-Lagging Issue?”

Price($) Often Sometimes Never # of Users

<300 33.6% 62.0% 4.4% 113
300 - 750 19.0% 71.2% 9.8% 163
>750 14.3% 50.0% 35.7% 42

Overall 23.6% 65.1% 11.3% 318

7. We follow the Linux design to treat thread as the resource princi-
pal in ShuffleDog.

2916 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 10, OCTOBER 2017

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:23:59 UTC from IEEE Xplore. Restrictions apply.

decides which threads are delay-critical threads and which
ones are not. To this end, it intercepts the Android frame-
work and thus can support existing apps (see more details
in Section 4).

To reduce runtime overhead, the Thread Tracker tracks
only the threads of the foreground app. When the fore-
ground app is switched to background, the Thread Tracker
stops tracking the app. When a user launches a new app or
switches another app from background to foreground, the
Thread Tracker starts to track this new foreground app.

The Thread Tracker employs a continuous-learning based
approach to further reduce the runtime overhead. For an
app, when the Thread Tracker can learn and identify that
some threads are delay-critical threads, it stores the informa-
tion of the threads into a database at local storage. When the
same app is launched again, the Thread Tracker loads the
information of the previously-learned delay-critical threads
from the database. Consequently, the Thread Tracker can
leverage the information to quickly identify the threads from
the new launched app without further analyzing the app’s
behavior. Such a fashion can reduce the runtime overhead.

After the Thread Tracker decides that a thread is a delay-
critical thread, it sends the thread ID to the ResourceManager
that manages the system resources required by the thread.

Resource Manager. The Resource Manager is a kernel mod-
ule which is designed to manage and allocate all the system
resources. The design principle of the Resource Manager is
to provide differential services to various types of threads.
For delay-critical threads, a high priority is applied to ensure
that the threads can occupy necessary resources to finish
their work quickly and thus the user-perceived latency can
be reduced. For other threads that do not affect user-per-
ceived latency, a low priority is applied to avoid resource
contention with the delay-critical threads. Given the thread
information obtained from the Thread Tracker, the Resource
Manager schedules various system resources accordingly.

In this paper, we develop three improved resource sched-
ulers that controls the usage of CPU, I/O, and GPU, respec-
tively. Specifically, for CPU scheduling, we leverage the
existing priority-based CPU scheduler and ensure that all
the delay-critical threads can get a high priority. For I/O
scheduling, we improve the current I/O scheduler in
Android OS to allow that the I/O requests to SD card from
delay-critical threads are more preferentially served than the
ones from normal threads. For GPU scheduling, we design a
new priority-based GPU scheduler to guarantee the perfor-
mance of delay-critical threads in using GPU. One challenge
in resource scheduling is providing differential services
without compromising the overall system performance. In

Section 5, we present how our Resource Manger can provide
better graphics processing to delay-critical threads without
sacrificing backgroundworkloads.

4 IDENTIFYING DELAY-CRITICAL THREADS

In this paper, a thread is regarded as a delay-critical thread if
and only if it meets two conditions simultaneously: i) it pro-
cesses user input directly or indirectly, and ii) it changes screen
output directly or indirectly. Obviously, if a thread meets the
preceding two conditions (e.g., displaying an image upon a
button click), its execution time can be perceivable to users
and thus affect user-perceived latency. That is, if the thread
spends more time on processing user input, the user-per-
ceived latency will be larger and vice versa. If a thread pro-
cesses user input but does not affect screen output (e.g.,
logging user inputs to a database), or it does change screen
output but that screen update is not driven by user input
(e.g., showing a pop-up notification for an incoming short
message), users cannot be aware of how much time the
thread costs and thus the thread is irrelevant to user-
perceived latency.

Fig. 3 describes examples to illustrate how to decide
whether a thread is delay-critical or not. These examples are
abstractions of real-world cases observed from some open-
sourced apps such as MuPDF, K-9 Mail, and so on. T1 is the
UI thread which receives user inputs and changes screen
outputs and thus is a delay-critical thread. A UI thread is
usually the main thread of Android apps and often creates
other child threads to process user inputs. For example, in
Fig. 3, T1 creates the thread T2 that processes user inputs
and updates the UI through T1 (e.g., in MuPDF when a user
uses fingers to zoom in, an AsyncTask is created to com-
pute the resized page). Thus, T2 is also a delay-critical
thread. A thread may not process user inputs or change the
UI directly. For example, T4 is created by T1 but it also cre-
ates another thread T5 that then updates the UI through T1.
As a result, both T4 and T5 are delay-critical threads.

Both T2 and T5 can change the screen outputs through
T1 that calls the invalidate() method of the Android UI
Framework to refresh the UI. Besides the basic widgets
extended from View,8 Android also provides another set of
APIs for developers so that they can render directly via
OpenGL ES [14] libraries. This case is common for games,
which require continual animation at a fixed interval. For
example, OpenFlappyBird creates a dedicated thread called
GL thread (T8) by leveraging Android API GLSurface-

View to directly draw the screen without switching back to
the UI thread. If the GL thread becomes slow, users can per-
ceive the delay. Thus, the GL thread should be treated as a

Fig. 2. The software architecture of ShuffleDog.

Fig. 3. Delay-critical threads versus delay-noncritical threads. Each cir-
cle represents a thread, and arrows represent interactions between
threads. White circles are delay-critical threads, while gray circles are
delay-noncritical threads. T1 is UI thread. T8 is GL thread.

8. A Java class that represents the basic building block for user inter-
face components.

HUANG ET AL.: SHUFFLEDOG: CHARACTERIZING AND ADAPTING USER-PERCEIVED LATENCY OF ANDROID APPS 2917

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:23:59 UTC from IEEE Xplore. Restrictions apply.

delay-critical thread. In Fig. 3, we add a dot line between T8
and T1 to indicate the T8 indeeds changes the screen out-
put. Consequently, both T7 and T8 are delay-critical threads.

In Fig. 3, T6 is a delay-noncritical thread because it does
not change screen output. Such a case can happen in many
apps. As an example, in WeChat,9 a thread called RWCa-
che_timeourChecker is created when users send a text mes-
sage, but it never interacts with the UI thread to change the
UI of WeChat and thus does not affect user-perceived
latency. T3 in Fig. 3 is also a delay-noncritical thread as it sat-
isfies none of the two conditions. Examples of T3 are back-
ground services of apps created by the Android system.

The Thread Tracker decides whether a thread of an app
is a delay-critical thread or not by observing the interactions
among all the threads of the app. Without loss of generality,
if we observe an interaction circle of {Tui; T1; T2; . . .Tn; Tui},
where Tui is the UI thread, then we decide that the UI thread
and threads {T1; T2; . . .Tn} are all delay-critical threads. The
aforementioned GL thread is also a delay-critical thread. All
other threads are delay-noncritical threads.

Identifying delay-critical threads is indeed a non-trivial
task. It is challenging because i) threads interact and commu-
nicate with each other in various ways, directly or indirectly;
ii)whether a thread is delay-critical is context-dependent, i.e.,
two threads created by the same function call (Thread.
create()) from the same thread can do different types of
tasks and thus cannot be judged as delay-critical or not; and
iii)we have to make decisions very fast at runtime as well as
with low overhead.

To address the challenges, we instrument all Android
APIs that related to inter-thread interactions and communi-
cations. These APIs can be divided into three categories: 1)
creating a new thread; 2) sending a message from one thread
to another; 3) sharing memory among multiple threads. We
inject our code into these APIs (see Section 6 for the APIs we
instrumented). As a result, when these APIs are called, we
can collect the information of calling thread and send it to
the Thread Tracker. For sharingmemory, developers can use
a lock or atomic object for synchronization, rather than
using explicit function calls. Therefore, we can annotate each
lock, atomic object, and message with a unique ID so
that the Thread Tracker can trace which two threads are
acquiring the same lock or atomic object, or which thread
sending the message. With such information, we are then
able to construct a thread-interaction graph as shown in
Fig. 3 and identify delay-critical threads.

One limitation of the preceding approach is that it may
take time to construct the desired graph and thus we cannot
make a quick-enough decision. For example, after the UI
thread creates a new thread to process a user input, it may
take a long time for the new thread to finish the task (e.g.,
loading a large image file and doing image processing)
before asking the UI thread to update the screen. We can
determine that the new thread is delay-critical only after it
calls back to the UI thread. However, it may be too late as
the new thread has already finished the task.

To address the limitation, the Thread Tracker keeps
recording the decision on whether a thread is delay-critical or
not, together with the execution context in form of a
< context; decision > pair. In this way, it can immediately
react to the same execution context with an accurate decision

afterwards. The execution context is the call stack (i.e., a
series of function calls of {f1; f2; . . . fn}) of the thread when
the decision is made, and the decision is simply ture or false.
The Thread Tracker stores the < context; decision > pairs
in memory and thus it can make a quick decision when the
same execution context happens again. Additionally, the
Thread Tracker keeps building and analyzing the thread-
interaction graph. When a new decision is made, it updates
an existing < context; decision > pair or adds a new pair.
Such online learning approach distinguishes our Thread
Tracker from other prior efforts [15], [16] based on monitor-
ing IPC, which can be applied for only offline analysis rather
thanmaking decision at runtime.

Furthermore, the Thread Tracker stores all the recorded
< context; decision > pairs into a database at local storage.
In the new launch of the same app, the Thread Tracker loads
the previously-learnt decisions from local storage and thus
records only incremental information. With this continu-
ous-learning approach, we not only improve the system
performance by identifying the delay-critical threads early,
but also reduce the system overhead.

To reduce the system overhead of the Thread Tracker, we
track only the threads of foreground app and stop tracking
them when the app is switched into background. In Sec-
tion 7, we demonstrate that our system introduces a quite
minor overhead.

5 REDUCING USER-PERCEIVED LATENCY

To reduce user-perceived latency, the Resource Manager
manages various system resources to provide prioritized
services to delay-critical threads. In this paper, we focus on
three critical resources, CPU, I/O, and GPU. We next ana-
lyze why current scheduling mechanisms are not adequate
to promise user-perceived latency, and then describe how
we schedule these resources to improve the performance of
delay-critical threads.

5.1 CPU Scheduling
Current CPU Scheduling. After the release of the Linux 2.6
kernel, the Completely Fair Scheduler(CFS) [17] is employed
as the default process scheduler. The priority of a thread is
called nice [18], ranging from �20 (highest priority) to 19
(lowest priority). Android inherits such a priority policy,
and pays special attention to foreground apps: i) UI thread
belonging to the foreground apps is assigned with a rela-
tively high priority (nice ¼ 0), whereas background threads
(such as a thread executing an AsyncTask) are typically
given a background priority (nice ¼ 10). ii) Android enfor-
ces an even stricter scheduling policy using Linux control
groups (cgroups [19]). Threads with background priorities
are implicitly moved into a background cgroup, where
they are limited to only a small percentage of the available
CPU if threads in other groups are busy. iii) Besides the
default strategy, Android also provides developers alterna-
tives to manually modify the priority via the API
android.os.Process.setThreadPriority. As a con-
sequence, through careful programming efforts, the devel-
opers can make their apps run with high priorities.

Inadequacies. In practice, however, our measurement
study in Section 2 demonstrates that current policies are not
satisfying enough. The reason is that developers often fail to
choose proper APIs or set proper priority, and the system
fails to identify the delay-critical threads. For example,9. One of the most popular social networking apps in China.

2918 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 10, OCTOBER 2017

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:23:59 UTC from IEEE Xplore. Restrictions apply.

MuPDF dispatches delay-critical tasks to a AsyncTask, which
runs in background priority, and therefore gets no advan-
tage over background workloads.

Our Approach. We leverage the CFS priority, but apply a
high priority to all the delay-critical threads identified by the
Thread Tracker, rather than only the UI thread. Specifically,
we set the nice value of delay-critical threads to 3 (nice ¼ 3)
that is slightly higher than UI threads but lower than back-
ground threads. As a result, we can ensure that the delay-
critical threads can get more CPU time than background
threads to reduce the user-perceived latency, and still retain
good UI response as the UI thread still has the highest prior-
ity. This priority can also release the delay-critical threads
from background cgroups.

5.2 I/O Scheduling
Current I/O Scheduling. In current Linux, the Complete Fair
Queuing (CFQ) [20] scheduler is the default I/O scheduler.
The CFQ maintains a request queue of outstanding I/O
requests for each thread that requests synchronous I/O
operations. For the asynchronous requests, all the requests
from all threads are batched together according to their
thread’s I/O priority.

At the system level, there are two priority levels: one is at
the class-level (real-time, best-effort, idle), and the other is the
priority within the class (8 queues in the real-time class, 8
queues in the best-effort class, and 1 queue in the idle class).
Disk access requests from best-effort class are granted only
when there is no real-time request left. If not set specifically,
the default I/O class will be best-effort and the additional pri-
ority numberwill be related to its CPU-scheduling priority.

Inadequacies. Although Android inherits the CFQ algo-
rithm, it does not expose Java APIs for developers to control
the I/O priority. What’s even worse, even if the developers
can set the threads with high I/O priority as they wish,
such modification cannot work because Android uses a sep-
arate system daemon to emulate Linux file permissions
atop a FAT filesystem (FUSE) on SD cards [21]. As a result,
the kernel-side I/O scheduler knows only the priorities of
the daemon rather than those of apps where these I/O
requests originate.

Fig. 4 shows the Android FUSE architecture.When an app
tries to read/write a file on a SD card, it will trap into the ker-
nel via a system call. After going through VFS, FS hooks and
FUSE Driver, it will send I/O requests back to user-space via
a char device: /dev/fuse. Then, Sdcard, the system dae-
mon, will read these I/O requests and check the permissions
of that app. If permitted, it will go down to other kernel parts,
like Block Layer and Device Driver, and finally access the SD
card. There are two threads inside Sdcard daemon, both of

which are with the same I/O priority (best-effort). Since
Sdcard daemon runs in separate threads out of the app, the
CFQ scheduler in Block Layer can see only the I/O priority
of the daemon. It means that all apps will be treated equally,
whatever the I/O priority they own.

Our Approach. To address the above problem, we modify
the Sdcard daemon and FUSE driver in two aspects. First,
we annotate all I/O requests with the I/O priority of the
thread that issues these requests. Such an annotation is
done inside the FUSE kernel driver as the I/O priority can-
not be accessible in user space. Second, in the Sdcard dae-
mon, we check the annotated I/O information and realize
different I/O priorities.

More specifically, in the Sdcard daemon, we use a dis-
patcher thread to read all I/O requests from kernel. However,
this thread itself doesn’t handle these requests. Instead, it
will dispatch each request to a handler thread based on the
I/O priority of the request. We create two handler threads to
serve best-effort I/O requests, and another two handler
threads to serve real-time I/O requests. Hence, when a
request from a real-time thread is received by Sdcard dae-
mon, the dispatcher thread will check the I/O priority and
dispatch it to a handler threadwith real-time priority.

With this modification, we can identify I/O requests of
delay-critical threads out of those belonging to other threads,
and leverage the CFQ scheduling to provide better I/O ser-
vice for delay-critical threads. Inside the Resource Manager,
we set the I/O priority of delay-critical threads as real-time.
We make this extension available to developers, by provid-
ing APIs for developers to set the I/O priority of threads.

5.3 GPU Scheduling
Current GPU Scheduling. GPU has become a powerful and
shareable resource in modern mobile systems. With various
user-space libraries such as OpenGL ES [14], Render-
Script [22], and OpenCL [23], developers can use GPU for not
only graphics rendering but also general-purpose program-
ming such as image processing, face recognition, and so on.

Unlike CPU and I/O, the current Android OS does not
provide a kernel scheduler for GPU. Instead, all the GPU
requests from different apps are directly sent to a GPU
driver in kernel via ioctl(), and the GPU driver dis-
patches the requests to GPU hardware. For example, the
Nexus 6 has a Adreno10 [24] GPU that uses the KGSL
driver [25] developed by Qualcomm.

Fig. 5 illustrates the architecture of the KGSL driver. The
GPU kernel driver is shared among multiple threads that
could belong to different applications (denoted as “APP” in
this figure). Each thread using GPU has a private GPU con-
text, and the KGSL driver maintains a command-batch11

queue for each context. The Adreno Dispatcher is the core
module in KGSL. It runs in a separate kernel thread and
keeps reading command batches from command-batch
queues and dispatching them to GPU. The Adreno Dis-
patcher may submit multiple command batches to GPU
simultaneously and it uses a ring buffer, calledAdreno Ring-
buffer, to remember how many command batches are run-
ning in GPU currently. The length of Adreno Ringbuffer
determines the max number of command batches allowed to

Fig. 4. The file system in userspace (FUSE) architecture in android. We
modify the shaded parts for I/O scheduling.

10. Adreno is a popular GPU widely used in many devices like Sam-
sung Galaxy Note, ZTE, XiaoMi, etc.

11. A batch of GPU drawing commands, bundled in user-space
library. It is the atomic unit of drawing commands.

HUANG ET AL.: SHUFFLEDOG: CHARACTERIZING AND ADAPTING USER-PERCEIVED LATENCY OF ANDROID APPS 2919

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:23:59 UTC from IEEE Xplore. Restrictions apply.

run in GPU at the same time. This max number is called
inflight and its default value is 15. When one or more com-
mand batches are completed, the GPU notifies the KGSL
driver via interrupts. Then the Adreno Dispatcher removes
those completed batches from Adreno Ringbuffer and
fetches new batches if available.

The lifecycle of a command batch in KGSL can be divided
into two main stages: i) Issued stage: from the time when it
arrives in KGSL to the time when it is dispatched to GPU.
Usually, the “issue-time” at this stage can be very short (e.g.,
less than 3ms)whenGPU’s load is low, since a new command
batch will immediately be issued to GPU. However, if GPU
load is high and thus the Adreno Ringbuffer is full, a new
command batch needs to wait for the completion of a previ-
ously-issued command batch. ii) Execution stage: the actual
time a command batch runs on GPU hardware, from being
dispatched into GPU towhen GPU notifies KGSL the comple-
tion of this command batch. This stage, as we call “execution-
time”, can vary in a large range (e.g., from 1ms to more than
100ms), depending on the complexity of the command batch.

Inadequacies. Obviously, the support on GPU scheduling
in current Android system is far from adequate. It does not
have a GPU scheduler in the kernel at all. The Adreno Dis-
patcher in the KGSL driver applies a scheduling policy of
First-In-First-Out (FIFO), providing no priority to different
GPU requests. Furthermore, GPU is non-preemptive and
thus a new GPU request may have to wait for up to 15 pre-
viously-issues requests to be finished, as defined by the
large Adreno Ringbuffer. Consequently, as we have shown
in Section 2, users may perceive a very long latency when
there are background threads fighting for GPU resource.

Our Approach. We propose to design a new GPU sched-
uler to address the above inadequacies. Specifically, we
design a priority-based round-robin scheduler by modify-
ing the KGSL driver. Like CFQ, we define two kinds of
GPU priorities: real-time and best-effort, and annotate each
command-batch queue with a proper priority. The com-
mand batches in best-effort queues will not be dispatched
unless there are no real-time queue or all real-time queues
are empty. Unlike CFQ, we don’t use a second-level prior-
ity. Instead, if there are multiple queues with the same pri-
ority, we take a round-robin approach among the queues.
We set delay-critical threads with real-time priority, and
delay-noncritical threads as best-effort. Similar to our I/O
scheduler, we also provide APIs for developers to change
the GPU priorities of threads manually.

One critical design in our GPU scheduling is how to bal-
ance the latency and efficiency in using GPU hardware. As
mobile GPUs do not support preemption, we cannot stop a

command batch that have been already sent to GPU, even if
it is a low-priority one. As a result, inflight is a critical
parameter determining how long a new command batch
may wait in the worst case before it is sent to GPU. The
larger inflight, the longer waiting time, and vice versa.
Ideally, to minimize the waiting time and the user-per-
ceived latency, inflight should be assigned as one. How-
ever, due to the pipeline-processing nature of GPU, the
overall GPU utilization can be low. Therefore, there is a
trade-off between the latency of high-priority requests and
the total throughputs of GPU.

To explore such a trade-off in depth, we conduct experi-
ments to study how different values of inflight can affect
the latency of a foreground app and the performance of a
background workload. Besides changing the value of
inflight, we also change the execution-time of command
batches of the backgroundworkload. Fig. 6 shows the results
in running OpenFlappyBird in foreground and GPUGenera-
tor in background, with the value of inflight ranging from
1 and 15. The controlled average execution-time of command
batches of GPUGenerator is 7ms and 4ms, respectively.

We make the following observations from Fig. 6. First,
the value of inflight significantly affects the foreground
latency and the background performance. A larger inflight
improves the background performance (i.e., reduces the total
drawing time of GPUGenerator) but increases the fore-
ground latency. Second, there is an optimal inflight value
that achieves the best trade-off between foreground latency
and background performance. However, such an optimal
point is different when the execution-time of command
batches of the background workloads is different. To mini-
mize the foreground latency, the optimal inflight value is
two in Fig. 6a and four in Fig. 6b, respectively.

Motivated by these observations, we employ an adaptive
design in controlling the value of inflight. We make
inflight adaptive to the execution-time of recent best-effort
command batches as follows:

inflight(x)=b16:7ms=xc; (1)

where x is the median execution-time of the last five best-
effort command batches (in ms). 16.7 ms is the frame time
with the default Android frame rate of 60 fps. The rationale
of this design is to ensure that a real-time command batch

Fig. 5. The existing KGSL architecture for mobile GPU.

Fig. 6. Experiments on how inflight affects the game performance
with different background workloads.

2920 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 10, OCTOBER 2017

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:23:59 UTC from IEEE Xplore. Restrictions apply.

can be likely finishedwithin a frame time tomaintain smooth
user experience, and multiple best-effort command batches
can still be submitted to GPU simultaneously. Indeed, if a
best-effort command batch takes a time longer than 16.7 ms
to finish, we cannot ensure that a real-time command batch
can be finished within a frame time. However, based on our
experiments, command batches are usually small, and our
system is effective in reducing foreground latency. We will
demonstrate the results in Section 7.

6 IMPLEMENTATION

We have implemented ShuffleDog on Android 5.0.1 (Lol-
lipop) with Linux 3.10 kernel, running upon Nexus 6. As
a cross-layer design, we modify both Android Frame-
work (Input Dispatcher, Sdcard daemon, core APIs) and
Linux Kernel (GPU Driver, FUSE Driver). Overall, our
implemented system contains 8,575 lines of code as illus-
trated in Table 5.

User-Space Modification. To collect the propagation infor-
mation among multiple threads, we instrument Android
APIs as illustrated in Table 6.

To help filter useless traces and reduce the overhead, we
only turn on this collecting feature when there are user
interactions triggered. To get the interaction information,
we instrument Input Dispatcher so that it can notify Thread
Tracker to start collecting. The collecting function will be
automatically turned off after the method invalidate()

is called or the app is switched to background. The Acti-

vityManager provides APIs to check foreground app.
Analyzed results of propagation traces is stored as

< context; decision > pairs in a SQLite12 table, and con-
structed as a Hashmap in memory. We reserve a configura-
ble XML file inside Thread Tracker, where we can specify
the max size of in-memory data size (default is 2 MB) and
replacement policy of in-memory items (MRU or LRU13).

Kernel-Space Modification. We add a boolean parameter
called ui_critical in task_struct

14 to record whether
a thread is delay-critical or not. It allows the Resource Man-
ager to access thread priority information all through the
kernel. To expose this information to user-space so that our
Thread Tracker can update the ui_critical value, we
register two more system calls in OS kernel, i.e., the
set_ui_critical, and the get_ui_critical. In addi-
tion, the callers of these two system calls must own “root”
permission, indicating that non-rooted apps can not
casually change their priority by themselves.

For CPU and I/O scheduling, we use some kernel func-
tions such as setpriority, ioprio_set to directly lever-
age the current priority mechanism. We set the nice value

of delay-critical threads to 3, which means these threads will
not be limited by the background cgroup with 5 percent
CPU usage limitation. For GPU, we implement our sched-
uler from scratch on Nexus 6, equipped with Adreno
420 [24]. As explained in Section 5, our GPU scheduler
makes completely-fair scheduling on command batches
from delay-critical threads (with five commands being dis-
patched at most for one time). Command batches from
delay-noncritical threads can not be scheduled until there are
high-priority commands. To monitor the execution time of
previous command batches, we record the timestamps of
dispatching events generated by Adreno Dispatcher, and
the specific interrupts from hardware which will be trig-
gered when a command is consumed. The average execu-
tion time of GPU command batches will also be stored in
the task_struct and updated every one second. Our
implementation can work with some other Adreno drivers,
as we have experimented on Nexus 5 equipped with 330
Adreno. We plan to evaluate our implementation to work
on more Android smartphones in the future.

7 EVALUATION

In this section, we evaluate ShuffleDog from three aspects:
i) performance improvement of user-perceived latency; ii) accu-
racy in identifying delay-critical threads; and iii) system over-
head. We use the 10 apps described in Section 2 and more
other apps. We first run these apps with background work-
loads without enabling ShuffleDog, and then run them again
by enabling ShuffleDog. All experiments are conducted on a
Nexus 6 phone running Android 5.0.1. Each experiment is
repeated for 20 times and we take median as the metric.

7.1 Performance Improvement
Our experimental results show that ShuffleDog is able to signif-
icantly reduce the user-perceived latency in running the apps
with the aggressive background workloads, as shown in
Table 7.Here, “default”means the default Android system.

For CPU scheduling (Table 7 a), as afore-mentioned,
the background workloads can severely interfere the
interactive experience in MuPDF, i.e., the latency
increases from 696 ms to more than 7 s with CPUGenera-
tor enabled, and even more than 8 s with CPUFilter
enabled. In contrast, in ShuffleDog, MuPDF can perform
more smoothly with the same background workloads

TABLE 5
LoC (Lines of Code) of ShuffleDog

Module LoC

Thread Tracker Service 5,731
Android APIs Interception 845
GPU Scheduler 1,237
Sdcard daemon + FUSE Driver 762
Total 8,575

TABLE 6
A List of Instrumented APIs

Category Instrumented APIs Collected data

create
threads

Thread, AsyncTask call_stack,
parent_tid, child_tid

ITC Message, Handler,

ThreadPoolExecutor,

Runnable, etc

call_stack, msg_id,
task_id, current_tid

lock Semaphore, ReentrantLock,

ReentrantReadWriteLock,

etc

call_stack, lock_id,
current_tid

atomic BlockingQueue,

AtomicIntegerArray,

ConcurrentMap, etc

call_stack, object_id,
current_tid

IPC binder driver in kernel from_tid, to_tid,
to_tname,
transaction_id

12. A lightweight relational database built-in in Android.
13. MRU: Most Recently Used. LRU: Least Recently Used.
14. Processor descriptor in Linux Kernel.

HUANG ET AL.: SHUFFLEDOG: CHARACTERIZING AND ADAPTING USER-PERCEIVED LATENCY OF ANDROID APPS 2921

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:23:59 UTC from IEEE Xplore. Restrictions apply.

running, and the latency is less than 800 ms with both
CPUGenerator and CPUFilter workloads enabled.

The similar results can be found in I/O scheduling. In
Table 7 b, compared to the baseline (3.8 s), the latency of
WeChat is extended by 4.1 s with IOGenerator and 3.3 s

with AppInstall, respectively. With our I/O Scheduler
enabled, the latency is maintained within 4.0 s, which
almost equals to the baseline.

The performance improvement of GPU scheduling is also
significant, as shown in Table 7 c. For example, with GPU-
Generator workloads in background, the latency of Open-
FlappyBird in default system increases by almost 4 times
compared to baseline, i.e., from 16.7 to 74.6 ms. In ShuffleDog,
the latency is still 16.7 ms with the same workloads. In other
words, ShuffleDog canmake the apps perform as smooth as if
noworkloads run in background.

ShuffleDog also imposes a small impact on the perfor-
mance of background workloads. For example, the process-
ing time of CPUGenerator is 6,825 ms in ShuffleDog, only
6 percent higher than 6,420 ms in default Android OS. Simi-
larly, for CPUFilter, the image processing time is only 3 per-
cent higher than the default Android OS. For I/O, such a
loss is also marginal, as the installation time increases by
0.3 s (from 8.4 to 8.7 s) and 0.1 s (from 8.4 to 8.5 s) for RAR
and ImageViewFlipper, respectively. For GPU, the impact on
background performance is a little bit higher, but still no
more than 7 percent and only 3 ms (from 44 to 47 ms). The
reason is that OpenFlappyBird requests for GPU resource
continually as long as it runs in foreground, while other
apps burst for resource only when user interactions occur.

More Evaluations on Games. Given that games are mostly
latency-sensitive and resource-intensive and we design and
implement a priority-based GPU scheduler from scratch,
we conduct more experiments on games. We choose a typi-
cal interaction situation-playing game in foreground while
doing GPU-intensive workloads in background. We select
10 popular games from different categories, including
Action (FlappyBird, Temple Run), Racing (Furious Racing, City
Driving 3D), Sports (3D-Tennis, Dream League Soccer), Role
Playing (Into the Dead), etc. For each game, we measure the
frame rate of running the game in five cases: on default
Android system without any background workload (base-
line), on default Android system with one of two back-
ground workloads (GPUGenerator and GPUFilter), and on
ShuffleDogwith one of the two background workloads.

Experimental results shown in Fig. 7 demonstrate that
ShuffleDog is able to significantly improve the performance
of the games in running with a background workload. For
example, on the default Android system, the background
image processing workload can reduce the frame rate by
46 percent (from 59 to 32 fps) in City Driving 3D, and 63 per-
cent (from 59 to 22 fps) in Subway Surfers. TheGPUGenerator,
can even more seriously reduce the flame rate, from 59 to 13
fps (i.e., a 78 percent reduction) in City Driving 3D. To com-
pare, the frame rate in ShuffleDog is very close to the baseline.
All except one of the games have a frame-rate reduction of
within 3 frames in ShuffleDog. The improvement of City Driv-
ing 3D can reach up to 23 times compared to default Android
case, i.e., a 2-frame reduction against a 46-frame reduction.
The exception is Implosion, in which ShuffleDog can help
reach a frame rate of only 42 fps with GPUGenerator work-
load, a 7-frame reduction compared to baseline. The reason
could be that Implosion has more complicated and gorgeous
graphic elements to render than other games.

Multi-Resource Case Study. To study how multiple-
resource contention affects the user-perceived latency collab-
oratively, we conduct a case study on RAR. Instead of study-
ing how I/O resource alone can affect the compression

TABLE 7
Performance Evaluation Where “Fore Perf” Indicates

Performance of Foreground Apps, and “Back Perf” Indicates
Performance of Background Workloads

App/Workloads System Fore Perf / Ratio Back Perf

Google Map default 1,266 ms 1.00x /
Google Map + default 4,088 ms 3.23x 6,420 ms
CPUGenerator ShuffleDog 1,297 ms 1.02x 6,515 ms
Google Map + default 4,824 ms 3.81x 65 ms
CPUFilter ShuffleDog 1,318 ms 1.04x 68 ms
Messenger default 1,673 ms 1.00x /
Messenger + default 2,368 ms 1.42x 6,420 ms
CPUGenerator ShuffleDog 1,702 ms 1.02x 6,782 ms
Messenger + default 2,631 ms 1.57x 65 ms
CPUFilter ShuffleDog 1,682 ms 1.01x 69 ms
Gmail default 2,217 ms 1.00x /
Gmail + default 4,525 ms 2.04x 6,420 ms
CPUGenerator ShuffleDog 2,301 ms 1.04x 6,685 ms
Gmail + default 4,933 ms 2.23x 65 ms
CPUFilter ShuffleDog 2,293 ms 1.03x 67 ms
MuPDF default 696 ms 1.00x /
MuPDF + default 7,325 ms 10.52x 6,420 ms
CPUGenerator ShuffleDog 714 ms 1.03x 6,825 ms
MuPDF + default 8,733 ms 12.55x 65 ms
CPUFilter ShuffleDog 721 ms 1.04x 67 ms

(a) The Back Perf of CPUGenerator is the time to do 109 float com-
putations, and for CPUFilter is the time to process an 10 MB
image.

App/Workloads System Fore Perf / Ratio Back Perf

WeChat default 3.8 s 1.00x /
WeChat + default 7.9 s 2.08x 9.8 s
IOGenerator ShuffleDog 4.0 s 1.05x 10.0 s
WeChat + default 7.1 s 1.87x 8.4 s
AppInstall ShuffleDog 3.9 s 1.03x 8.6 s
RAR default 3.9 s 1.00x /
RAR + default 5.9 s 1.51x 9.8 s
IOGenerator ShuffleDog 3.9 s 1.00x 10.1 s
RAR + default 5.1 s 1.31x 8.4 s
AppInstall ShuffleDog 4.0 s 1.03x 8.7 s
ImageViewFlipper default 878 ms 1.00x /
ImageViewFlipper default 1,365 ms 1.55x 9.8 s
+ IOGenerator ShuffleDog 897 ms 1.02x 10.2 s
ImageViewFlipper default 1,252 ms 1.43x 8.4 s
+ AppInstall ShuffleDog 882 ms 1.00x 8.5 s

(b) The Back Perf of IOGenerator is the time to read a 256 MB
file randomly via fio, and for AppInstall is the time to complete
installation.

App/Workloads System Fore Perf / Ratio Back Perf

SystemUI default 516 ms 1.00x /
SystemUI + default 2,218 ms 4.30x 39 ms
GPUGenerator ShuffleDog 527 ms 1.02x 40 ms
SystemUI + default 1,346 ms 2.61x 62 ms
GPUFilter ShuffleDog 522 ms 1.01x 64 ms
OpenFlappyBird default 16.7 ms 1.00x /
OpenFlappyBird + default 74.6 ms 4.47x 44 ms
GPUGenerator ShuffleDog 16.7 ms 1.00x 47 ms
OpenFlappyBird + default 32.7 ms 1.96x 65 ms
GPUFilter ShuffleDog 16.7 ms 1.00x 67 ms

(c) The Back Perf of GPUGenerator is the time to draw 5,000 trian-
gles, and for GPUFilter is the time to process an 10 MB image.

2922 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 10, OCTOBER 2017

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:23:59 UTC from IEEE Xplore. Restrictions apply.

performance, we run both I/O and CPU workloads in back-
ground. The results are reported in Table 8. It shows that the
compression latency affected by I/O and CPU collabora-
tively can reach as high as 43 s, almost a 10-times increase
compared to the baseline (3.9 s). By enabling our CPU sched-
uler alone, the latency is reduced to 7.1 s. By enabling our
I/O scheduler alone, the latency can be reduced to 37.1 s.
However, when enabling both I/O and CPU schedulers, the
latency can be significantly reduced to 4.3 s, which is only
10 percent higher compared to the baseline.

7.2 Accuracy of Thread Tracker
We then evaluate how the Thread Tracker can identify
delay-critical thread accurately. Besides the five apps
(MuPDF, SystemUI, IO File Manager, Image ViewFlipper, and
OpenFlappyBird) used in our measurement study, we add
another five more apps (Conversations, AdAway, KeePass-
Droid, OsmAnd, and K9 Mail). We choose these apps because
they are open-sourced and thus we can inspect the source
code to get the ground truth on whether a thread should be
delay-critical or not.

The results are shown in Table 9. Overall, 8 out of the
10 apps have wrongly-treated threads in default Android
system; and for other two apps, all their threads are with
high priority and delay-critical. Specifically, False Positive
(FP) comes from incorrectly treating delay-noncritical threads
as high priority. Such cases happen when developers use
APIs such as Thread and Runnable to deal with tasks that
are not related to user input actions. Take the app Conversa-
tions as an example. When a user tries to send or fetch mes-
sages, this app also writes some tags into local database.
Such a task is assignedwith in a high-priority thread, but has
nothing to do with user interaction. Only one app has this
FP issue. False Negative (FN) means assigning delay-
critical threads with low-priority, e.g., using AsyncTask to

process user action related tasks. FN is a widely-happened
issue. 7 out of the 10 apps suffers from FN issues in default
Android system.

ShuffleDog does not have any FP issue and is able to miti-
gate FN issues in nine apps. The only exception is OpenFlap-
pyBird. The reason is that OpenFlappyBird has two threads
sharing two integers without locking or using atomic
objects. As there is no explicit synchronization mechanism
used, our Thread Tracker cannot capture this case. We dis-
cuss more on this limitation in Section 8.

7.3 System Overhead
We also evaluate the runtime overhead introduced by Shuf-
fleDog. As shown in Table 10, the extra CPU usage is less
than 3.1 percent, mainly caused by the Thread Tracker ser-
vice running in background. Although the Thread Tracker
needs to collect traces, make run-time analysis, and carry
data between memory and database, these operations hap-
pen only when there are user interactions triggered. The
memory overhead is about 7 MB, coming from the storage
of the < context; decision > pairs, additional threads in
Sdcard daemon, and the parameters in task_struct.
Such small overhead of CPU and memory are minor on
modern smartphones and well worth given the significant
reduction of user-perceived latency achieved by ShuffleDog.

8 DISCUSSION

Our current system has some limitations that call for more
future work. First, the Thread Tracker can handle most cases

Fig. 7. Frame rates of 10 games with and without ShuffleDog.

TABLE 8
The Latency Impact of Contenting on Both

GPU and I/O Resources

App/Workloads
Enabled
Scheduler

Latency Ratio

RAR (Baseline) None 3.9 s 1.0x

RAR + IOGenerator
+ CPUGenerator

None 43.0 s 11.0x
CPU 7.1 s 1.8x
I/O 37.1 s 9.5x

CPU + I/O 4.3 s 1.1x

TABLE 9
Accuracy of the Thread Tracker Where “FP” Means Incorrectly
Setting Delay-Noncritical Threads as High-Priority, and “FN”

Means Incorrectly Setting Delay-Critical Threads as Low-Priority

App Category
default ShuffleDog

FP FN FP FN

MuPDF PDF reader ‘ @ ‘ ‘

SystemUI System utility ‘ @ ‘ ‘

OI File Manager File manager ‘ ‘ ‘ ‘

ImageViewFlipper Image Viewer ‘ @ ‘ ‘

OpenFlappyBird 2D game ‘ ‘ ‘ @
Conversations Instant message @ ‘ ‘ ‘

AdAway Advertisement block ‘ @ ‘ ‘

KeePassDroid Security tool ‘ @ ‘ ‘

OsmAnd Navigation ‘ @ ‘ ‘

K9 Mail Email client ‘ @ ‘ ‘

HUANG ET AL.: SHUFFLEDOG: CHARACTERIZING AND ADAPTING USER-PERCEIVED LATENCY OF ANDROID APPS 2923

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:23:59 UTC from IEEE Xplore. Restrictions apply.

but is limited in three aspects. First, it cannot work if two
threads share memory without using locks or atomic objects
(which is not a good programming practice indeed) as such
implicit interactions cannot be captured. Second, it cannot
work if developers use Android Native Development Kit
(NDK) to handle user action as we make instruments at Java
API level. Third, it cannot identify the threads communica-
tion via synchronized and wait as instruments in Run-
time VM (i.e., Dalvik and ART [26]15) are needed. The latter
two limitations are implementation-level issues and can be
addressed byNDK andVM level instruments.

Another limitation is our GPU scheduler cannot guaran-
tee foreground performance in “large” background GPU
calls. Due to the non-preemptive nature of GPU, a high-pri-
ory request may have to wait for a large but low-priority
request to complete, leading to undesirable user-perceived
latency. Possible solutions include enabling GPU preemp-
tion and dividing a large call into small ones.

It’s worth mentioning that, if developers’ implementa-
tion is improper (e.g., intensive calculation more than 16 ms
during each frame time), ShuffleDog can not help achieve
smooth user experience any longer. The reason is that
ShuffleDog focuses on resource scheduling policies, which
can help only when there are multiple threads competing
for the same resource. Improving the performance of only
one single thread is not the focus of this work. For these
cases, some previously measurement analysis and devel-
oped tools such as QoE Doctor [27], [28] can be leveraged.

Our current implementation can support CPU, disk I/O,
and GPU. There are also other system resources such as
memory and network delay that can affect user-perceived
latency as well. Although they are already explored in some
extend [29] [30] [31], it is desirable to explore how those
resources impact user-perceived latency and how to further
reduce the latency. The main reason why we don’t consider
network scheduling in this paper is that long network
requests are usually caused by poor network condition (e.g.,
long round-trip time (RTT) and low bandwidth) and/or
large computation workloads at server-side (I cannot find
good references here. Yunxin said it’s okay we leave it as
common sense.). The bottlenecks often reside in the network
and the server rather than resource contention at client-side.

Our implementation may not work on all Android devi-
ces due to the heavy fragmentation of Android devices [32].

In addition, we focus on Android platform only in this
paper. Although modern OSes such as Windows and iOS
share the similar high-level OS abstractions of Android, it is
still interesting to explore how our approach works on other
popular mobile platforms. We should also take into account
the compatibility of ShuffleDogwhen the version of Android
OS evolves [33].

9 RELATED WORK

In this section, we discuss existing literature studies that
relate to our work in this paper.

RSIO [34] applies a similar approach to trace propagation
among “latency-sensitive” processes. However, their strat-
egy depends on the observation that latency-sensitive activi-
ties typically need to respond quickly to I/O involving user
interactions, whichmay not be true formanymobile applica-
tions. Also, RSIO needs manual configuration while our
approach does not. TIPME [35] allows users to trigger trace
capturing post-analysis when experiencing long latencies, a
method too disruptive to mobile users today. Magpie [36]
asks developer-provided event semantics to characterize
each individual user action handled by Windows-based
servers. These studies are motivational to our work. AppIn-
sight [16] instruments app binaries to log user transaction
events, therefore identifying critical execution paths in user
transactions and performance issues. Panappticon [15]
adopts a similar approach by instrumenting the Android OS;
in particular, it extends the approach to the OS kernel. How-
ever, suchwork focused only on offline analysis and targeted
revealing app inefficiencies to their developers. For example,
Panappticon can not decide a thread to be delay-critical or
not when it’s created by UI thread, since we do not know if it
will affect UI elements afterwards. In contrast, our Thread
Tracker can identify delay-critical threads at runtime with
very small overhead, by learning from prior executions.

Redline [37] provides OS support that allows apps to
statically reserve resources for their tasks. Compared to
it, our latency-based QoS interface doesn’t need efforts
from developers. It identifies delay-critical tasks and prop-
erly allocates resource for them automatically. Time-
card [38] tracks user requests in a mobile-cloud system,
providing latency information to the cloud server so that
the latter can adapt its behavior in order to meet dead-
lines. However, it can only be applied on certain kinds of
apps, and does not address resource management for
continuous interaction in a single mobile OS. For mobile
devices, ura [39] proposes to identify app execution
epochs that have no direct impact on user-perceived
latencies and thus reduce CPU frequency. However, it is
unable to differentiate threads that do impact user experi-
ences and provision for them accordingly.

The system proposed by Huh et al. [40] identifies inter-
active tasks and provisions them by modifying CPU
scheduling policies for them. They focus on CFS itself,
and treat all foreground threads as high-priority. In con-
trast, we leverage the current CFS policy, but propose a
more accurate Tracker module to identify delay-
critical tasks. For mobile I/O scheduling, SmartIO [5]
reduces Android I/O delay by adding a third priority class
to CFQ, isolating read and write operations. Jeong,
et al. [41] proposed a novel scheme to improve the respon-
siveness of file system operations by detecting and boost-
ing QASIOs at runtime in I/O scheduler. Also, many other

TABLE 10
Measured System Overhead

App Memory CPU Usage

Google Map 7,152 KB 2.2%
Messenger 7,018 KB 1.8%
Gmail 7,125 KB 2.6%
WeChat 7,391 KB 3.1%
MuPDF 6,557 KB 1.6%
RAR 6,623 KB 1.8%
ImageViewFlipper 6,538 KB 1.3%
SystemUI 6,541 KB 1.3%
Furious Racing 6,562 KB 1.9%
OpenFlappyBird 6,538 KB 1.7%

15. Although ART has replaced Dalvik since Android 4.4, we believe
that the instrumentation is similar because the main features intro-
duced by ART (e.g., ahead-of-time compilation and improved garbage
collection) have little relationship with ShuffleDog.

2924 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 10, OCTOBER 2017

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:23:59 UTC from IEEE Xplore. Restrictions apply.

researchers have proposed improvements to I/O schedu-
lers for flash memory based Solid State Drives (SSD) [42],
[43], [44], but they mainly focus on overall throughput and
fairness, and didn’t fix the gap between Android and
Linux as we have mentioned.

To manage GPUs, some scheduling design and imple-
mentations have been proposed for desktops and servers.
GPU scheduling can be realized by replacing black-box
driver with open-source library [45], [46] or interposing the
memory protection mechanism [47]. PTask [48] proposes a
new set of OS abstractions to support GPUs as first class
computing resources, and provides system-wide guarantees
like fairness and performance isolation. Instead of desktops
and servers, we implement our GPU scheduler by revising
the open-source KGSL driver and enable priority-based
scheduling without compromising the performance of back-
ground workloads on mobile devices. To further address
the non-preemptive issue in GPUs, some approaches have
been proposed such as splitting longer requests [49] and
context switch [50], [51], [52]. However, these approaches
depend on open-sourced software stacks or need hardware
modification. We leave the non-preemptive issues to our
future work.

10 CONCLUSION

In this paper, we have conducted a set of measurement
studies to quantify user-perceived latency of Android apps
and revealed that current resource management mechanism
in Android is not sufficient to promise satisfying user expe-
rience, i.e., the user-perceived latency of foreground apps
can be dramatically increased by background resource-
intensive workloads. We have designed and implemented a
novel system to accurately identify delay-critical threads at
runtime and improve the resource management for these
threads. Evaluation results show that our system can signifi-
cantly reduce user-perceived latency of foreground apps in
running with aggressive background workloads, with mini-
mal system overhead and without compromising the sys-
tem throughput.

ACKNOWLEDGMENTS

This work was supported by the High-Tech Research and
Development Program of China under Grant No.
2015AA01A203, the Natural Science Foundation of China
(Grant Nos. 61370020, 61421091, 61528201, 61529201), and
the Microsoft-PKU Joint Research Program. Felix Xiaozhu
Lin’s work was supported by NSF Award #1464357 and a
Google Faculty Award. The three authors, Gang Huang,
Mengwei Xu, and Felix Xiaozhu Lin, contributed equally to
this work. Xuanzhe Liu acts as the corresponding author of
this work.

REFERENCES

[1] Y. Liu, C. Xu, and S. Cheung, “Characterizing and detecting per-
formance bugs for smartphone applications,” in Proc. 36th Int.
Conf. Softw. Eng., 2014, pp. 1013–1024.

[2] Adreno GPU profiler, 2016. [Online]. Available: https://
developer.qualcomm.com/software/adreno-gpu-profiler

[3] Image processing test, 2016. [Online]. Available: https://android.
googlesource.com/platform/frameworks/rs/+/master/java/
tests/ImageProcessing.

[4] J. Axboe, “FIO: Flexible IO tester,” 2016. [Online]. Available:
http://linux.die.net/man/1/fio

[5] D. T. Nguyen, et al., “Reducing smartphone application delay
through read/write isolation,” in Proc. 13th Annu. Int. Conf. Mobile
Syst. Appl. Serv., 2015, pp. 287–300.

[6] Touch events lost during garbage collection, 2009. [Online]. Avail-
able: https://code.google.com/p/android/issues/detail?id=1742.

[7] SQLite optimization and async I/O, 2011. [Online]. Available:
https://groups.google.com/forum/#!topic/android-ndk/
veutXL9oO4w

[8] Nexus 7 doesn’t respond to touch, 2012. [Online]. Available:
https://code.google.com/p/android/issues/detail?id=35663

[9] Android spends 7.4 percent of its time unresponsive, 2009.
[Online]. Available: https://groups.google.com/forum/#!msg/
android-platform/7O_ClQkuGSE/nKbeFOPoXNkJ

[10] Game unresponsive in android, 2012. [Online]. Available: http://
androidqueries.com/games-unresponsive-android-3164.html

[11] Why my android running so slowly, 2014. [Online]. Available:
http://phonetipz.com/why-is-my-android-running-so-slow/

[12] UI lagging problem in MIUI, 2014. [Online]. Available: http://en.
miui.com/thread-62958–1-1.html

[13] When will we be done with UI lagging, 2015. [Online]. Available:
https://www.reddit.com/r/Android/comments/2cxadc/
when_will_we_be_done_with_ui_stutterlag/

[14] Khronos Group, “OpenGL ES-The standard for embedded accel-
erated 3D graphics,” 2016. [Online]. Available: https://www.
khronos.org/opengles/

[15] L. Zhang, D. Bild, R. Dick, Z. Mao, and P. Dinda, “Panappticon:
Event-based tracing to measure mobile application and platform
performance,” in Proc. Hardware/Software Codes. Syst. Synthesis,
2013, pp. 1–10.

[16] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller,
and S. Shayandeh, “Appinsight: Mobile app performance moni-
toring in the wild,” in Proc. 10th USENIX Conf. Operating Syst. Des.
Implementation, 2012, pp. 107–120.

[17] I. Molnar, “Linux CFS scheduler,” 2007. [Online]. Available:
https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.tex

[18] Linux sched nice design, 2016. [Online]. Available: https://www.
kernel.org/doc/Documentation/scheduler/sched-nice-design.txt

[19] Linux cgroups, 2004. [Online]. Available: https://www.kernel.
org/doc/Documentation/cgroups/cgroups.txt

[20] J. Axboe, “Linux block I/O-present and future,” in Proc. Ottawa
Linux Symp., 2004, pp. 51–61.

[21] Android FAT-on-sdcard, 2010. [Online]. Available: https://
github.com/android/platform_system_core/blob/master/
sdcard/sdcard.c

[22] Android renderscript, 2016. [Online]. Available: http://developer.
android.com/guide/topics/renderscript/compute.html

[23] Khronos Group, “OpenCL-The open standard for parallel pro-
gramming of heterogeneous systems,” 2016. [Online]. Available:
https://www.khronos.org/opencl/

[24] Qualcomm Adreno, 2016. [Online]. Available: https://developer.
qualcomm.com/software/adreno-gpu-sdk/gpu

[25] Qualcomm 2D/3D graphics driver, 2010. [Online]. Available:
https://lwn.net/Articles/394665/

[26] ART and Dalvik, 2013. [Online]. Available: https://source.
android.com/devices/tech/dalvik/

[27] Q. A. Chen, et al., “QoE doctor: Diagnosing mobile app QoE with
automated UI control and cross-layer analysis,” in Proc. 2014 Int.
Meas. Conf., 2014, pp. 151–164.

[28] Y. Feng, Q. Liu, M. Dou, J. Liu, and Z. Chen, “Mubug: A mobile
service for rapid bug tracking,” Sci. China Inf. Sci., vol. 59, no. 1,
pp. 1–5, 2016.

[29] M. Mohandespour, M. Govindarasu, and Z. Wang, “Rate, energy,
and delay tradeoffs in wireless multicast: Network coding versus
routing,” IEEE Trans. Mobile Comput., vol. 15, no. 4, pp. 952–963,
Apr. 2016.

[30] H. Al-Tous and I. Barhumi, “Resource allocation for multiple-sour-
ces single-relay cooperative communication OFDMA systems,”
IEEE Trans.Mobile Comput., vol. 15, no. 4, pp. 964–981, Apr. 2016.

[31] K. Lee, J. Jeong, Y. Yi, H. Won, I. Rhee, and S. Chong, “Max contri-
bution: An online approximation of optimal resource allocation in
delay tolerant networks,” IEEE Trans. Mobile Comput., vol. 14,
no. 3, pp. 592–605, Mar. 2015.

[32] L. Wei, Y. Liu, and S. Cheung, “Taming android fragmentation:
Characterizing and detecting compatibility issues for android
apps,” in Proc. 31st IEEE/ACM Int. Conf. Automated Softw. Eng.,
2016, pp. 226–237.

HUANG ET AL.: SHUFFLEDOG: CHARACTERIZING AND ADAPTING USER-PERCEIVED LATENCY OF ANDROID APPS 2925

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:23:59 UTC from IEEE Xplore. Restrictions apply.

[33] H. Wang and B. Ding, “Growing construction and adaptive evolu-
tion of complex software systems,” Sci. China Inf. Sci., vol. 59,
no. 5, pp. 050 101:1–050 101:3, 2016.

[34] H. Zheng and J. Nieh, “RSIO: Automatic user interaction detection
and scheduling,” in Proc. ACM SIGMETRICS Int. Conf. Meas.
Model. Comput. Syst., 2010, pp. 263–274.

[35] Y. Endo and M. Seltzer, “Improving interactive performance
using TIPME,” in Proc. ACM Int. Conf. Meas. Model. Comput. Syst.,
2000, pp. 240–251.

[36] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier, “Using magpie
for request extraction and workload modelling,” in Proc. 6th Conf.
Symp. Opearting Syst. Des. Implementation, 2004, pp. 18–18.

[37] T. Yang, T. Liu, E. D. Berger, S. F. Kaplan, and J. E. B. Moss,
“Redline: First class support for interactivity in commodity oper-
ating systems,” in Proc. 8th USENIX Conf. Operating Syst. Des.
Implementation, 2008, pp. 73–86.

[38] L. Ravindranath, J. Padhye, R. Mahajan, and H. Balakrishnan,
“Timecard: Controlling user-perceived delays in server-based
mobile applications,” in Proc. 24th ACM Symp. Operating Syst.
Principles, 2013, pp. 85–100.

[39] W. Song, N. Sung, B.-G. Chun, and J. Kim, “Reducing energy con-
sumption of smartphones using user-perceived response time
analysis,” in Proc. 15th Workshop Mobile Comput. Syst. Appl., 2014,
pp. 20:1–20:6.

[40] G. Banga, P. Druschel, and J. C. Mogul, “Resource containers: A
new facility for resource management in server systems,” in Proc.
3rd Symp. Operating Syst. Des. Implementation, 1999, pp. 45–58.

[41] D. Jeong, Y. Lee, and J.-S. Kim, “Boosting quasi-asynchronous I/O
for better responsiveness in mobile devices,” in Proc. 13th USENIX
Conf. File Storage Technol., 2015, pp. 191–202.

[42] M. P. Dunn, “A new I/O scheduler for solid state devices,” PhD
dissertation, Computer Engineering, Texas A&M Univ., College
Station, TX, USA, 2009.

[43] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh, “Disk sched-
ulers for solid state drivers,” in Proc. 7th ACM Int. Conf. Embedded
Softw., 2009, pp. 295–304.

[44] J. Kim, S. Seo, D. Jung, J.-S. Kim, and J. Huh, “Parameter-aware
I/O management for solid state disks (SSDs),” IEEE Trans. Com-
put., vol. 61, no. 5, pp. 636–649, May 2012.

[45] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa,
“TimeGraph: GPU scheduling for real-time multi-tasking envi-
ronments,” in Proc. USENIX Annu. Tech. Conf., 2011, Art. no. 17.

[46] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt, “Gdev: First-
class GPU resource management in the operating system,” in
Proc. USENIX Annu. Tech. Conf., 2012, pp. 401–412.

[47] K. Menychtas, K. Shen, and M. L. Scott, “Disengaged scheduling
for fair, protected access to fast computational accelerators,” in
Proc. Architectural Support Program. Languages Operating Syst.,
2014, pp. 301–316.

[48] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel,
“PTask: Operating system abstractions to manage GPUs as com-
pute devices,” in Proc. 23rd ACM Symp. Operating Syst. Principles,
2011, pp. 233–248.

[49] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar, “RGEM: A responsive GPGPU execution model for
runtime engines,” in Proc. IEEE Real-Time Syst. Symp., 2011,
pp. 57–66.

[50] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collaborative pre-
emption for multitasking on a shared GPU,” in Proc. 20th Int.
Conf. Architectural Support Program. Languages Operating Syst.,
2015, pp. 593–606.

[51] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and
M. Valero, “Enabling preemptive multiprogramming on GPUs,”
in Proc. 41st Int. Symp. Comput. Archit., 2014, pp. 193–204.

[52] J. Menon, M. De Kruijf, and K. Sankaralingam, “iGPU: Exception
support and speculative execution on GPUs,” in Proc. 39th Int.
Symp. Comput. Archit., 2012, pp. 72–83.

Gang Huang is now a full professor in the Insti-
tute of Software, Peking University. His research
interests include of middleware of cloud comput-
ing and mobile computing. He is a member of the
IEEE.

Mengwei Xu is working toward the PhD degree
in the School of Electronics Engineering and
Computer Science, Peking University, Beijing,
China. His research interests include mobile
computing and operating system.

Felix Xiaozhu Lin received the BS degree in
automation, the MS degree in computer science
both from Tsinghua University, in 2006 and 2008,
respectively, and the PhD degree in computer
science from Rice University, in 2014. He is an
assistant professor with Purdue University. His
research interests include operating system and
runtime for programmability, energy efficiency,
and performance.

Yunxin Liu received the PhD degree in computer
science from Shanghai Jiao Tong University, in
2011 (through the SJTU-MSRA joint PhD pro-
gram). He is a lead researcher with Microsoft
Research Asia. His current research interests
include mobile systems and networking. He is a
senior member of the IEEE.

Yun Ma is working toward the PhD degree in the
School of Electronics Engineering and Computer
Science, Peking University, Beijing, China. His
research interests include services computing
and web engineering. He is a student member of
the IEEE.

Saumay Pushp is working toward the PhD
degree in the School of Computing, Korea
Advanced Institute of Science and Technology,
Daejeon, South Korea. His research interest
include mobile systems and networking.

Xuanzhe Liu is an associate professor in the
School of Electronics Engineering and Computer
Science, Peking University, Beijing, China. His
research interests include of services computing,
mobile computing, web-based systems, and big
data analytic. He is the corresponding author of
this work. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2926 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 16, NO. 10, OCTOBER 2017

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:23:59 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

