# **RAVEN:** Perception-aware Optimization of Power Consumption for Mobile Games



**Chanyou Hwang (KAIST)\***, Saumay Pushp (KAIST)\*, Changyoung Koh (KAIST), Jungpil Yoon (KAIST), Yunxin Liu (Microsoft Research), Seungpyo Choi (KAIST), Junehwa Song (KAIST)

\*Co-primary authors, order chosen alphabetically.



### **Rapid Evolution of Mobile Devices**

Larger screens, more powerful processors, and bigger batteries.

<image>

2008 2010 2014

2017

NC lab.



#### **Mobile Games?**



## **Battery Killer: Graphics Processing**

- Use more power for better graphics.
- Draw 60 frames per second regularly!



NC lab.



### **Perceptually Redundant Frames**

- Drawing **perceptually redundant** frames
  - → Make no change in **human eyes!**
  - $\rightarrow$  Useless



#### **NC** lab.

### **Perceptually Redundant Frames**



#### Perceptually redundant frame

- Perceptually redundant frames are **common** in mobile games.
  - **SSIM** (Structural Similarity)<sup>[1]</sup> >  $0.975^{[2]} \rightarrow$  Perceptually redundant (similar enough)
- More than **50%** of frames are perceptually redundant in 8 of 10 mobile games.

[1] Wang, Zhou, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. "Image quality assessment: from error visibility to structural similarity." IEEE transactions on image processing (2004) [2] Eduardo Cuervo, Alec Wolman, Landon P. Cox, Kiron Lebeck, Ali Razeen, Stefan Saroiu, and Madanlal Musuvathi. Kahawai: High-Quality Mobile Gaming Using GPU Offload. MobiSys '15



### **Expected Power Saving**



<sup>\*</sup>Measured while playing Candy Crush Saga on Nexus 5X

#### Reducing the **half** of **frame renderings** → **Extends** battery life **42%** more!



#### **Research Problem**

# How can we reduce perceptually redundant frames in mobile games?

#### **Previous Approaches**

|         | Approaches                                                                                                                                   |  |  |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Static  | <ul> <li>Limiting Frame Rate<sup>[3]</sup></li> </ul>                                                                                        |  |  |
| Dynamic | <ul> <li>Content change rate based<br/>frame rate scaling<sup>[4]</sup></li> <li>Input-based frame rate<br/>scaling<sup>[5]</sup></li> </ul> |  |  |

[3] Samsung Game Tuner

[4] Kim, Dongwon, Nohyun Jung, and Hojung Cha. "Content-centric display energy management for mobile devices". DAC 2014.

[5] Yu Yan, Songtao He, Yunxin Liu, and Longbo Huang. "Optimizing Power Consumption of Mobile Games". HotPower '15.

### **Previous Approaches**



#### Adjusting frame rate

- Coarse-grained approach
- Adjusts the frame rate in a period.



### **Table of Contents**

- Motivation
- Solution Approach
- System Overview
- Technical Challenges
- Evaluation
- Discussion
- Conclusion



### **Solution Approach**

**RAVEN** optimizes power consumption by reducing perceptually redundant frames

Perception Aware Scaling of Frame Rendering Rate(PAS)

- (1) **Predict** the perceptual similarities with upcoming frames
- ② Skip rendering frames if perceptually similar enough (= redundant)



Predict the perceptual similarity











### **Table of Contents**

- Motivation
- Solution Approach
- System Overview
- Technical Challenges
- Evaluation
- Discussion
- Conclusion

#### **System Overview**



- **1. Reads** current frame and **measures** perceptual similarity (to the previous frame)
- 2. Predicts the perceptual similarities to next frames and decides the number of frame skippings (using perceptual similarity thresholds)
- **3. Skips** rendering next **k** frames (**k** is decided in R-Regulator)



### **Table of Contents**

- Motivation
- Solution Approach
- System Overview

#### Technical Challenges

- Evaluation
- Discussion
- Conclusion

### **Technical Challenges**

Processing high-resolution game graphics (> 1920x1080)

• in hard real-time (< 16.6 ms) with low energy overhead

Supporting **commercial devices** and **games**.

Y-Difference-based perceptual similarity prediction

**Reading low resolution virtual display** 

**Customizing Android graphics architecture** 

### **Y-Difference-based Perceptual Similarity Prediction**

**Linear regression** using Y-Difference

- Y-Difference of recent two frames
- + Moving average of recent Y-Difference values
  - → **SSIM** of current and next frames

Estimated Perceptual Similarity of  $f_N$ (current frame) and  $f_{N+k}$  (k<sup>th</sup> next frame)

 $EPS(f_N, f_{N+k})$ 

$$= \mathbf{1} - c_{kl_1} \times D_Y(f_{N-l}, f_N) - c_{kl_2} \times ma_w$$

•  $D_Y(f_{N-l}, f_N)$  is the Y-Difference of the frames  $f_{N-l}$  and  $f_N$ .

*ma<sub>w</sub>* is the moving average of the recent Y-Diff scores over window size w



### **Why Y-Difference?**

Why RAVEN uses Y-Difference to predict SSIM?

• SSIM is too heavy and slow for using in mobile devices.



**Slow computation** ( < 13 FPS, > 80ms per frame)

| Heavy energy overhead |            |          |           |  |  |
|-----------------------|------------|----------|-----------|--|--|
| ( > 13%               | of total p | ower con | sumption) |  |  |



#### **Y-Difference**

#### **Y-Difference (Luminance** difference)

• Sum of the **luminance differences** for each pixel



• Human eyes are sensitive to luminance changes in detecting motions.



### **Y-Difference and SSIM**

#### Y-Difference is a good approximation of SSIM

• It shows high correlation with SSIM





### **Reading Low Resolution Virtual Display**

#### **Virtual Display**

- Provided by Android SurfaceFlinger
- Efficient frame cloning aided by

#### Hardware Composer

 Specialized hardware for composing frames from multiple applications.





### **Y-Difference in Low Resolution Frames**

By reading low-resolution frame, **RAVEN** uses less energy!

• Y-Diff is working at a very low resolution (80x45)



#### NC lab.

### **Customizing Android Graphics Architecture**





### **Customizing Android Graphics Architecture**



### **Table of Contents**

- Motivation
- Solution Approach
- System Overview
- Technical Challenges

#### Evaluation

- Discussion
- Conclusion



#### **Evaluation**

#### **Experiment Methods / Metrics**

| Method   | Energy Measurement | Video-based Study    | User Assessment       |
|----------|--------------------|----------------------|-----------------------|
|          |                    | Video quality score, | User assessment score |
| ivietric | Power consumption  | # of frame skippings | (UX)                  |



#### **Target Workloads**

Three categories of workloads



Frequency of perceptually redundant frame



### **Comparisons**

|                   | Better user experience                                                       | More power saving                                                                |
|-------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Baseline          | <b>60 FPS</b><br>Original, Best user experience                              | <b>30 FPS</b><br>Conventional approach (Limiting frame rate)                     |
| RAVEN-<br>Enabled | <b>U-PAS</b><br>User-friendly Perception Aware Scaling<br>(PAS in the paper) | <b>E-PAS</b><br>Energy-friendly Perception Aware Scaling<br>(PAS++ in the paper) |



#### **Energy Measurement**

#### How much can **RAVEN** save energy?

- Measured with 8 games
  - 3 minutes with 5 repetitions for each setting





#### **Power Saving**

**RAVEN** saved up-to **30%** of total power consumption. **E-PAS** saved **22%** and **U-PAS** saved **8%** in average.





#### **Video-based Study**

#### How RAVEN affects the visual quality of mobile games?

#### Objective video quality assessment models (VMAF, SSIM) Result in the **quality difference** between the original video and target (Processed) videos.





### **Visual Quality Difference**

#### U-PAS and E-PAS provide almost same visual quality to 60FPS



U-PAS E-PAS 30 FPS



#### **User Assessment**

#### How RAVEN affects UX of mobile games?



#### 12 Participants played 3 games

• Cookie Run (Dynamic), Candy Crush Saga (Hybrid), Solitaire (Static)



#### **Blind Test**

Assessing user experiences without informing the setting of each task

- **U-PAS** and **60 FPS** are hard to discriminate.
- E-PAS also shows quality user experience except in Cookie Run





#### **Comparative Test**

#### Direct comparison between E-PAS and 60 FPS

 Most of participants scored either "imperceptible" or "perceptible but not annoying" (except Cookie Run)



Candy Crush Saga Solitaire Cookie Run

#### Conclusion

#### **S** NC lab.

#### **RAVEN:** Perception-aware Optimization of Power Consumption for Mobile Games

#### Reduces perceptually redundant frame renderings

• By using the PAS (Perception-Aware Scaling of frame rendering rate) method

#### • Three key ideas in the design and implementation

- Y-Difference-based perceptual similarity prediction
- Reading low resolution virtual display
- Customizing Android graphics architecture

• Saves energy while maintaining quality user experience

#### **Thanks!**



## **Questions?**