
RAVEN: Perception-aware Optimization of
Power Consumption for Mobile Games

Chanyou Hwang (KAIST)*, Saumay Pushp (KAIST)*, Changyoung Koh (KAIST),
Jungpil Yoon (KAIST), Yunxin Liu (Microsoft Research), Seungpyo Choi (KAIST),

Junehwa Song (KAIST)
∗Co-primary authors, order chosen alphabetically.

Rapid Evolution of Mobile Devices

Larger screens, more powerful processors, and bigger batteries.

2

2017201420102008

Mobile Games?

3

Battery Killer: Graphics Processing

4

◦ Use more power for better graphics.

◦ Draw 60 frames per second regularly!

Graphics processing

Perceptually Redundant Frames

5

◦ Drawing perceptually redundant frames

 Make no change in human eyes!

 Useless

Frame #1085Frame #1084

This frame is
Perceptually
Redundant

Perceptually Redundant Frames

◦ Perceptually redundant frames are common in mobile games.

◦ SSIM (Structural Similarity)[1] > 0.975[2]
 Perceptually redundant (similar enough)

◦ More than 50% of frames are perceptually redundant in 8 of 10 mobile games.

6

Perceptually redundant frame

[1] Wang, Zhou, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. "Image quality assessment: from error visibility to structural similarity." IEEE transactions on image processing (2004)
[2] Eduardo Cuervo, Alec Wolman, Landon P. Cox, Kiron Lebeck, Ali Razeen, Stefan Saroiu, and Madanlal Musuvathi. Kahawai: High-Quality Mobile Gaming Using GPU Offload. MobiSys ’15

Expected Power Saving

Reducing the half of frame renderings Extends battery life 42% more!

7

30 60

650mW
(27%)

(108 Minutes,
42% more)

4.3 Hours
Battery Life

6.1 Hours
Battery Life

*Measured while playing Candy Crush Saga on Nexus 5X

Research Problem

8

How can we reduce perceptually redundant frames
in mobile games?

Approaches

Static

Dynamic

Previous Approaches

9

[3] Samsung Game Tuner
[4] Kim, Dongwon, Nohyun Jung, and Hojung Cha. "Content-centric display energy management for mobile devices”. DAC 2014.
[5] Yu Yan, Songtao He, Yunxin Liu, and Longbo Huang. ”Optimizing Power Consumption of Mobile Games”. HotPower ’15.

• Content change rate based
frame rate scaling[4]

• Input-based frame rate
scaling[5]

• Limiting Frame Rate[3]

Previous Approaches

10

Adjusting frame rate

◦ Coarse-grained approach

◦ Adjusts the frame rate in a period.

R RStock

Adjusting
Frame Rate

R

R

30FPS 60FPS

Rendered
Frame
(Necessary)

R Perceptually
Redundant Frame
(Unnecessary)

Touch Input (Hint)

Table of Contents

 Motivation

 Solution Approach

 System Overview

 Technical Challenges

 Evaluation

 Discussion

 Conclusion

11

Solution Approach

RAVEN optimizes power consumption by reducing perceptually redundant frames

Perception Aware Scaling of Frame Rendering Rate(PAS)

① Predict the perceptual similarities with upcoming frames

② Skip rendering frames if perceptually similar enough (= redundant)

12

Not rendered yet

Predict the perceptual similarity
Skip rendering

(if perceptually redundant)

13

Table of Contents

 Motivation

 Solution Approach

 System Overview

 Technical Challenges

 Evaluation

 Discussion

 Conclusion

14

System Overview

15

1. Reads current frame and measures perceptual similarity (to the previous frame)

2. Predicts the perceptual similarities to next frames and decides the number of
frame skippings (using perceptual similarity thresholds)

3. Skips rendering next k frames (k is decided in R-Regulator)

F-Tracker R-Regulator R-InjectorPerceptual
similarity of
current and
previous frames

The number
of frame
skippings (k)

1 2 3

Android Framework

Reading frames Skipping frame renderings

Table of Contents

 Motivation

 Solution Approach

 System Overview

 Technical Challenges

 Evaluation

 Discussion

 Conclusion

16

Technical Challenges

Processing high-resolution game graphics (> 1920x1080)

◦ in hard real-time (< 16.6 ms) with low energy overhead

Supporting commercial devices and games.

17

Y-Difference-based perceptual similarity prediction

Reading low resolution virtual display

Customizing Android graphics architecture

Y-Difference-based Perceptual Similarity Prediction

18

Linear regression using Y-Difference

◦ Y-Difference of recent two frames

◦ + Moving average of recent Y-Difference values

 SSIM of current and next frames

EPS 𝒇𝑵, 𝒇𝑵+𝒌

= 𝟏 − 𝒄𝒌𝒍𝟏 × 𝑫𝒀 𝒇𝑵−𝒍, 𝒇𝑵 − 𝒄𝒌𝒍𝟐 ×𝒎𝒂𝒘

• 𝑫𝒀 𝒇𝑵−𝒍, 𝒇𝑵 is the Y-Difference of the frames 𝒇𝑵−𝒍 𝑎𝑛𝑑 𝒇𝑵.
• 𝒎𝒂𝒘 is the moving average of the recent Y-Diff scores over

window size w

Estimated Perceptual Similarity of 𝒇𝑵(current frame)
and 𝒇𝑵+𝒌 (kth next frame)

Why Y-Difference?

Why RAVEN uses Y-Difference to predict SSIM?

◦ SSIM is too heavy and slow for using in mobile devices.

19

Heavy energy overhead
(> 13% of total power consumption)

Slow computation
(< 13 FPS, > 80ms per frame)

Y-Difference

Y-Difference (Luminance difference)

◦ Sum of the luminance differences for each pixel

◦ Human eyes are sensitive to luminance changes in detecting motions.

20

Y-Difference and SSIM

Y-Difference is a good approximation of SSIM

◦ It shows high correlation with SSIM

21

Y-Diff 𝑓𝑛, 𝑓𝑛+1 @1920x1080

S
S
IM

@
1
9
2
0
x
1
0
8
0

(Pearson’s correlation coefficient: -0.926)

Reading Low Resolution Virtual Display

22

Virtual Display

◦ Provided by Android SurfaceFlinger

◦ Efficient frame cloning aided by

Hardware Composer

◦ Specialized hardware for composing frames from

multiple applications.

Game
Surface
Flinger

Hardware
Composer

RAVEN

Virtual Display
(80x45)

Primary Display
(1920x1080)

Y-Difference in Low Resolution Frames

By reading low-resolution frame, RAVEN uses less energy!

◦ Y-Diff is working at a very low resolution (80x45)

23

Linear relationship to Y-Diff at very low
resolution (80x45)

Customizing Android Graphics Architecture

24

Draw a frame

Submit the frame to Android

Compose frames
(SurfaceFlinger)

Show on the device display

Game Application

Android System

F-Tracker

R-Regulator

R-Injector

Read
frames

Skip renderings

RAVEN Runtime
(a system service)

OpenGL

Hardware
Composer

Low-res
Virtual
Display

Customizing Android Graphics Architecture

25

Draw a frame

Submit the frame to Android

Game Application

R-InjectorDelay

R
e
n
d
e
ri
n
g
 L

o
o
p Rendering

fk

Rendering
fk+2

Delay
Rendering

fk

Rendering
fk+2

Rendering
fk+1

time

Without delay

With delay
(skipping fk+1)

Table of Contents

 Motivation

 Solution Approach

 System Overview

 Technical Challenges

 Evaluation

 Discussion

 Conclusion

26

Evaluation

27

Energy Measurement

Power consumption

User Assessment

User assessment score
(UX)

Original Processed

Video-based Study

Video quality score,
of frame skippings

Method

Metric

Experiment Methods / Metrics

Target Workloads

28

Three categories of workloads

Static GamesDynamic Games

Static objects,
simple graphical

effects

Continuously
changing objects

Hybrid Games

Frequency of perceptually redundant frame

Low HighMedium

Sometimes static,
sometime dynamic

Comparisons

29

Better user experience More power saving

Baseline 60 FPS
Original, Best user experience

30 FPS
Conventional approach (Limiting frame rate)

RAVEN-
Enabled

U-PAS
User-friendly Perception Aware Scaling

(PAS in the paper)

E-PAS
Energy-friendly Perception Aware Scaling

(PAS++ in the paper)

Energy Measurement

30

How much can RAVEN save energy?

◦ Measured with 8 games

◦ 3 minutes with 5 repetitions for each setting

Monsoon Power Monitor

Power Saving

31

-10

0

10

20

30

40

Total Static Games Hybrid Games Dynamic Games

A
ve

ra
ge

 P
o

w
er

Sa

vi
n

g(
%

)

System
overhead!

RAVEN saved up-to 30% of total power consumption.
E-PAS saved 22% and U-PAS saved 8% in average.

U-PAS E-PAS 30 FPS

Frequency of perceptually redundant frame

LowHigh Medium

Video-based Study

How RAVEN affects the visual quality of mobile games?

32

Objective video quality assessment models (VMAF, SSIM)
Result in the quality difference between the original video and target (Processed) videos.

Reference
Video

(60FPS)

Processed
Video

(30FPS, U-PAS,
E-PAS)

Video Quality
Assessment Model

(VMAF, SSIM)

Video Quality Score
(Visual Quality

Difference)

13 games

Visual Quality Difference

33

80%

85%

90%

95%

100%

Static Hybrid Dynamic

SSIM

80%

85%

90%

95%

100%

Static Hybrid Dynamic

VMAF

U-PAS and E-PAS provide almost same visual quality to 60FPS

Q
u

al
it

y
Sc

o
re

 (
H

ig
h

er
 is

 b
et

te
r)

U-PAS E-PAS 30 FPS

User Assessment

12 Participants played 3 games

◦ Cookie Run (Dynamic), Candy Crush Saga (Hybrid), Solitaire (Static)

34

Comparative testBlind test

How RAVEN affects UX of mobile games?

Blind Test

Assessing user experiences without informing the setting of each task

◦ U-PAS and 60 FPS are hard to discriminate.

◦ E-PAS also shows quality user experience except in Cookie Run

35

60 FPS U-PAS E-PAS 30 FPS

median

averageX

Comparative Test

36

Direct comparison between E-PAS and 60 FPS

◦ Most of participants scored either “imperceptible” or “perceptible but not annoying”

(except Cookie Run)

Conclusion

RAVEN: Perception-aware Optimization of Power Consumption for Mobile Games

◦ Reduces perceptually redundant frame renderings

◦ By using the PAS (Perception-Aware Scaling of frame rendering rate) method

◦ Three key ideas in the design and implementation

◦ Y-Difference-based perceptual similarity prediction

◦ Reading low resolution virtual display

◦ Customizing Android graphics architecture

◦ Saves energy while maintaining quality user experience

37

Thanks!

38

Questions?

