
DeepWear: Adaptive Local Offloading
for On-Wearable Deep Learning
Mengwei Xu, Feng Qian, Mengze Zhu, Feifan Huang, Saumay Pushp ,

and Xuanzhe Liu ,Member, IEEE

Abstract—Due to their on-body and ubiquitous nature, wearables can generate a wide range of unique sensor data creating countless

opportunities for deep learning tasks. We propose DeepWear, a deep learning (DL) framework for wearable devices to improve the

performance and reduce the energy footprint. DeepWear strategically offloads DL tasks from a wearable device to its paired handheld

device through local network connectivity such as Bluetooth. Compared to the remote-cloud-based offloading, DeepWear requires no

Internet connectivity, consumes less energy, and is robust to privacy breach. DeepWear provides various novel techniques such as

context-aware offloading, strategic model partition, and pipelining support to efficiently utilize the processing capacity from nearby

paired handhelds. Deployed as a user-space library, DeepWear offers developer-friendly APIs that are as simple as those in traditional

DL libraries such as TensorFlow. We have implemented DeepWear on the Android OS and evaluated it on COTS smartphones and

smartwatches with real DL models. DeepWear brings up to 5.08X and 23.0X execution speedup, as well as 53.5 and 85.5 percent

energy saving compared to wearable-only and handheld-only strategies, respectively.

Index Terms—Wearables, deep learning, offloading

Ç

1 INTRODUCTION

MAKING deep learning (DL for short in the rest of this
paper) tasks run on mobile devices has raised huge

interests in both the academia [1], [2], [3], [4], [5], [6], [7], [8]
and the industry [9], [10], [11]. In this paper, we focus on how
to effectively and efficiently apply DL on wearable devices.
Our study ismotivated by three key observations. First, wear-
able devices are becoming increasingly popular. According
to a recent market research report, the estimated global
market value of smartwatch is $10.2 billion in 2017, and is
expected to witness an annual growth rate of 22.3 percent
from 2018 to 2023 [12]. Second, DL on wearable devices ena-
bles new applications. Due to their on-body and ubiquitous
nature, wearables can collect a wide spectrum of data such as
body gesture, heartbeat reading, fitness tracking, eye track-
ing, and vision (through a smart glass). Such unique data
creates countless applications for DL. Third, despite a pleth-
ora of work on DL on smartphones, so far very few studies
focus specifically on the interplay between DL and the wear-
able ecosystem.

In practice, supporting DL on wearable devices is quite
challenging, due to the heavy computation requirements of
DL and constrained processing capacity on today’s COTS
(commercial off-the-shelf) wearable devices. Intuitively,
running DL tasks locally is not a good option for most wear-
ables. Then an instinct idea is to perform offloading [13], [14].
Instead of offloading computations to the remote cloud, we
instantiate the idea of Edge Computing [15] by offloading DL
tasks to a nearby mobile device (e.g., typically a smartphone or
a tablet) that has local connectivity with the wearable. Such
a “local” offloading is indeed feasible for three reasons. (1)
As to be demonstrated in our study, today’s handheld devi-
ces such as smartphones are sufficiently powerful with
multi-core CPU, fast GPU, and GBs of memory. (2) The vast
majority of wearables (e.g., smartwatches and smart glasses)
are by default paired with a handheld device and using it as
a “gateway” to access the external world. For example, a
recent user study [16] reports that a smartwatch is paired
with a smartphone during 84 percent of the day time. (3)
Prior efforts have been invested in reducing the computa-
tion overhead of DL tasks through various optimizations
such as model compression [3], [17], [18], [19]. In our work,
we strategically integrate and instantiate some of their con-
cepts into our practical system to make DL tasks wearable-
friendly.

We envision that such a local (edge) offloading approach
has three key advantages. First, offloading to a handheld
does not require the not-always-reliable Internet connectiv-
ity that can lead to high energy and monetary cost (e.g., over
cellular networks). Instead, the communication between the
wearable and the handheld can be realized by cheap short-
range radio such as Bluetooth or Bluetooth Low Energy
(BLE). Second, users routinely carry both wearables and the

� M. Xu, M. Zhu, F. Huang, and X. Liu are with the Key Laboratory of High
Confidence Software Technologies (Peking University), Ministry of Educa-
tion, Beijing 100871, China.
E-mail: {xumengwei, zhumengze, huangfeifan, liuxuanzhe}@pku.edu.cn.

� F. Qian is with the Computer Science and Engineering Department,
University of Minnesota–Twin Cities, 200 Union Street SE, Minneapolis,
MN, 55455. E-mail: fengqian@umn.edu.

� S. Pushp is with the Korea Advanced Institute of Science and Technology,
291 Daehak-ro, Eoeun-dong, Yuseong-gu, Daejeon, South Korea.
E-mail: saumay@nclab.kaist.ac.kr.

Manuscript received 23 May 2018; revised 22 Dec. 2018; accepted 7 Jan. 2019.
Date of publication 18 Jan. 2019; date of current version 6 Jan. 2020.
(Corresponding author: Xuanzhe Liu.)
Digital Object Identifier no. 10.1109/TMC.2019.2893250

314 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 2, FEBRUARY 2020

1536-1233� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4943-5999
https://orcid.org/0000-0003-4943-5999
https://orcid.org/0000-0003-4943-5999
https://orcid.org/0000-0003-4943-5999
https://orcid.org/0000-0003-4943-5999
https://orcid.org/0000-0002-7908-8484
https://orcid.org/0000-0002-7908-8484
https://orcid.org/0000-0002-7908-8484
https://orcid.org/0000-0002-7908-8484
https://orcid.org/0000-0002-7908-8484
mailto:
mailto:
mailto:

paired handheld devices, making offloading ubiquitously
feasible. Third, offloading to paired handhelds minimizes
risks of privacy leak because the potentially sensitive data
(e.g., medical sensor data) generated fromwearables is never
leaked to the network.

Motivated by the preceding analysis, we design, imple-
ment, and evaluate DeepWear, a holistic DL framework
that supports local offloading for wearable DL applications.
DeepWear has several salient features as described below.

� Context-aware offloading scheduling. We make a first
in-depth measurement study to demystify the per-
formance of wearable-side DL tasks and reveal the
potential improvements that can be gained through
offloading. Making an appropriate offloading deci-
sion involves scrutinizing a wide range of factors
including the DL model structure, the application’s
latency requirement, and the network connectivity
condition, etc. In addition, our offloading target
(the handheld) introduces additional complexities:
despite being more powerful than a wearable, a
handheld still has limited processing power (com-
pared to the cloud) and battery life; as a personal
computing device, a handheld also runs other apps
that consume system resources by incurring bursty
workload. Therefore, DeepWear further takes into
account the status of handheld. We incorporate
the preceding considerations into a lightweight online
scheduling algorithm that judiciously determines
which, when, and how to offload.

� Partial offloading. Instead of making a binary decision
of offloading the whole DL model versus executing
the entire model locally, DeepWear supports the par-
tial offloading. Specifically, DeepWear splits a model
into two sub-models that are separately executed
first on the wearable and then on the handheld. We
found that in some scenarios, partial offloading out-
performs the binary decision, because an internal
layer inside the model may yield a smaller interme-
diate output compared to the original input size,
thus reducing the data transfer delay. To support the
partial offloading, we develop a heuristic-based
algorithm that efficiently identifies a set of candidate
partition points whose exhaustive search takes expo-
nential time. The optimal splitting point can then be
quickly determined by examining the small candi-
date set. Our partial offloading approach can work
with any DL model with arbitrary topology.

� Optimized data streaming. DeepWear introduces the
additional optimization for streaming input such as
video frames and audio snippets continuously fed
into the same model. Specifically, DeepWear
employs pipelined processing on wearable and hand-
held, which helps fully utilize the computation
resources on both devices and thus effectively
improves the overall throughput.

� Application transparency and good usability. We propose
a modular design of the DeepWear system whose
most logic is transparent to the application. Develop-
ers can use the same APIs as those of traditional
DL libraries (e.g., TensorFlow [20]) to perform DL

inference. In addition, DeepWear provides simple
interfaces for developers or users to flexibly specify
policies such as the latency requirement and energy
consumption preferences. Overall, DeepWear is read-
ily deployable to provide immediate benefits for
wearable applications.

We have implemented the DeepWear prototype on
Android OS (for handheld) and Android Wear OS (for
wearable). We evaluated our prototype on COTS smart-
phones and smartwatches using the state-of-the-art DL
models. DeepWear can effectively identify the optimal par-
tition for offloading under various combinations of device
hardware, system configurations, and usage contexts, with
the accuracy being up to 97.9 percent. DeepWear brings
on average 1.95X and 2.62X (up to 5.08X and 23.0X) DL
inference speedup compared to the handheld-only and
wearable-only execution strategies, respectively. In addi-
tion, it brings on average 18.0 and 32.7 percent (up to
53.5 and 85.5 percent) energy saving compared to the two
strategies respectively. Meanwhile, DeepWear can adapt its
offloading strategies to diverse contexts such as the battery
level on either wearable or handheld, the Bluetooth band-
width, the handheld processor load level, and the user-
specified latency requirement. In addition, our pipelining
technique helps improve the processing throughput by up
to 84 percent for streaming data compared to the non-
pipelining approach. Finally, DeepWear incurs negligible
runtime and energy overhead.

It should be noted that, there have been various code off-
loading efforts, including MAUI [13], CloneCloud [21],
COMET [22], DPartner [23], and so on. These systems focus
on optimizing the general-purpose computation-intensive
tasks instead of deep learning applications, and the offload-
ing decisions are often manually defined at the design time
(e.g., profiling [21] or manually labeled [23]). However,
DeepWear intuitively differs from these systems as it relies
on the domain knowledge of deep learning models, i.e., the
data topology between layers of a DL model rather than the
code-level characteristics, and the offloading decision is
dynamically made at runtime rather than manually pre-
defined. Additionally, compared to recent efforts on mobile
DL offloading such as [24], our work specifically focuses on
wearable devices, with additional effective mechanisms
such as streamed data processing. To summarize, we make
the following major technical contributions in this paper.

� We conduct to the best of our knowledge the most
comprehensive characterization of wearable DL off-
loading, by applying 8 representatively popular DL
models on COTS wearables/smartphones under
various settings and quantifying several key trade-
offs. We demonstrate that whether and how much
users can benefit from the wearable-to-handheld off-
loading depends on multiple factors such as hard-
ware specifications, model structures, etc. We reveal
that in some cases partitioning the DL models into
two parts and running them separately on the wear-
able and the handheld would have better perfor-
mance and quality of user experience.

� We design and implement DeepWear, a DL
framework for wearable devices. It intelligently,

XU ET AL.: DEEPWEAR: ADAPTIVE LOCAL OFFLOADING FOR ON-WEARABLE DEEP LEARNING 315

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

transparently, and adaptively offloads DL tasks from
a wearable to a paired handheld. With the help from
local offloading, DeepWear better preserves users’
privacy and thus realizes a more ubiquitous offload-
ing without requiring the Internet connectivity.
DeepWear introduces various innovative and effec-
tive techniques such as context-aware offloading,
strategic model partition, and pipelining support, to
better utilize the processing capacity from nearby
handhelds while judiciously managing both the
devices’ resource and energy utilization.

� We comprehensively evaluate the DeepWear
approach over COTS wearable and handheld devi-
ces. The results demonstrate that DeepWear can
accurately identify the optimal partition strategy,
and strike a much better tradeoff among the end-
to-end latency and the energy consumption on both
the handheld and the wearable, compared to the
wearable-only and the handheld-only strategies.

The remainder of the paper is organized as follows. We
survey the related work in Section 2. We present our meas-
urements about wearables DL in Section 3. We describe the
design and implementation of DeepWear in Sections 4 and
5, respectively. We comprehensively evaluate DeepWear in
Section 6. We discuss the limitations and possible future
work in Section 7 and conclude the paper in Section 8.

2 RELATED WORK

In this section, we discuss existing literature studies that
relate to our work presented in this paper.

2.1 Ubiquitous Deep Learning

In the past few years, DL is the state-of-the-art AI technique
that has been widely applied in numerous domains, such as
computer vision, pattern recognition, natural language
processing, and so on [25], [26], [27]. A DL model is essen-
tially a directed graph where each node represents a proc-
essing unit that applies certain operations to its input and
generates output. Accordingly, developers need to first con-
struct a specific model graph, and then use data to train the
model (known as the training stage). Once trained, the
model can be applied for prediction (known as the inference
stage).

Tremendous efforts have been made towards reducing
the computation overhead of DL tasks, making it feasible
on resource-constrained devices such as smartphones. For
example, some recent efforts [6], [28], [29], [30] have pro-
posed lightweight DL models that can run directly on low-
end mobile processors. Some other efforts such as [31], [32],
[33], [34] aimed at building customized hardware accelera-
tors for DL or other machine learning tasks. Besides, various
model compression techniques [3], [17], [18], [19], [35], [36]
have been proposed for accelerating the DL task and reduc-
ing its energy consumption.

In contrast, DeepWear specifically focuses on wearable
devices that have specific features and application contexts
compared to smartphones. DeepWear proposes novel tech-
niques such as strategic model partition and pipelining to
efficiently utilize the processing capacity from a nearby
handheld.

2.2 Offloading

Many prior efforts, such as MAUI [13], CloneCloud [21]
COMET [22], and DPartner [23], have already studied the
offloading problem from mobile devices to the remote
server or cloud. In addition, DeepWear also learns lessons
from the recent work on “edge cloud” or “cloudlet” offload-
ing [37], [38], [39]. All these frameworks are control-centric,
as they make decisions at the level of code or function. For
example, COMET [22] offloads a thread when the execution
time exceeds a pre-defined threshold, ignoring any other
information, e.g., considerable data volume (of distributed
shared memory) to transfer, wireless network available, etc.
CloneCloud [21] makes similar offloading decisions for all
invocations of the same function. MAUI [13] designs an
enhanced offloading decision mechanism that makes pre-
dictions for every single function invocation separately and
considers the entire application when choosing which func-
tion to offload. DPartner [23] requires offline profiling to
identify the computation-intensive functions and the pro-
grammers’ manual efforts to annotate whether these func-
tions are “offloadable”.

However, these general-purpose offloading efforts are not
sufficiently adequate to the partition decisions of DL model,
which essentially depends on the data topology. As a result,
layers of a given type within the DL model can have signifi-
cantly different computational and data characteristics [24],
and can vary a lot even when executing the same code or
functions. In contrast, DeepWear differs from these
approaches in that its offloading leverages the domain
knowledge of DL to make the partition decision. Although
DeepWear still requires the offline profiling, it does not
introduce any additional manual efforts (such as annota-
tion) to programmers, and the partition is performed
dynamically based on the runtime DL topology. Another
important difference of DeepWear is the careful considera-
tions of practical deployability. That is, existing function-
level code offloading approaches are too complex and
heavyweight, e.g., the complicated program state synchro-
nization for DSM in COMET [22], and the high-volume data
transfer of DPartner [23]. Such overhead can deter the
deployability on wearables. DeepWear designs a very light-
weight framework that is easy to be deployed on wearables.
Additionally, DeepWear achieves the satisfactory perfor-
mance and accuracy when making offloading decisions,
which has not been well studied in existing offloading
solutions.

2.3 DL Model Partitioning

The recently proposed DeepX [3] also partitions DL mod-
els for low-power DL inference. However, DeepX only
distributes partitioned submodels onto different local pro-
cessors while DeepWear performs collaborative DL infer-
ence on two devices and thus needs to take into
consideration the data transfer overhead and many other
external factors that play important roles in making off-
loading decisions. Also, DeepX targets at only linear DNN
models, while DeepWear can handle complex DL models
with non-linear structures. Some other work [24], [40] also
split DL computation between client devices and remote
clouds. DeepWear instead focuses on the collaboration
between wearables and their paired handheld devices in

316 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

order to preserve the privacy and realize ubiquitous DL
without requiring Internet connectivity. Several unique
challenges thus stem from the architecture we have cho-
sen, such as balancing the resource consumption on both
mobile devices. Furthermore, DeepWear introduces opti-
mizations for streaming data processing, a missing feature
in prior work.

3 A MEASUREMENT STUDY OF WEARABLE DL

In this section, we begin with some empirical studies to
demystify the performance and limitations of running DL
tasks on wearables.

In this work, we study 8 state-of-the-art DL models that
have been widely adopted in various applications, as shown
in Table 1. For the LSTM-HAR model [43], we use a popular
configuration as 2-layer stacked, 1,024 hidden state size to
carry out our experiments. For other models, we use the
default configurations as described in the original literature
or open-sourced repositories. These models range from nat-
ural language processing, audio processing, to computer
vision tasks and mobile sensor intelligence, all of which are
well suited to ubiquitous and wearable scenarios. The right-
most column in Table 1 also lists the number of FLOPs
(floating point operations) for conducting a single inference
for each model. It is worth mentioning that DL models are
often generalized and can be used in many different tasks
with very few customization efforts. For example, the LSTM
model used for language modeling can also be applied to
problems such as machine translation [47], question
answering [48], and handwriting generation [49]. In particu-
lar, DeepWear does not assume any specific DL model
structure, and can work with all of them.

We envision that DL will become an essential part in the
wearable ecosystem due to wearables’ unique sensing capa-
bilities. However, running computation-intensive DL tasks
on wearable devices is quite challenging due to wearables’
relatively limited processing capabilities. A possible
approach is thus to offload the workload from a wearable to
its paired handheld. We choose the handheld over the cloud
because offloading to the handheld does not require the
Internet connectivity that can incur high energy and mone-
tary cost. Doing so also minimizes risks of privacy breach
because the potentially sensitive data is never leaked to the
Internet. Note that there are quite a lot prior work [50], [51],
[52] targeting at wearable offloading for better performance
(see Section 2). However, none of them studies DL tasks,
thus leaving an important question unanswered: whether

and how much offloading to a handheld can benefit DL on wear-
ables? To answer this question, we carry out a set of experi-
ments on 8 popular DL models and various hardware
setups. Our experiment results show that whether and how
much users can benefit from offloading depends on multi-
ple factors. In particular, we will reveal that in some cases
partitioning the DL models into two parts and run them
separately on the wearable and the handheld would be a
more promising option. We call such a scheme “partial
offloading”.

Experimental Setup. We use a Nexus 6 smartphone run-
ning Android 7.0 as the handheld device, and an LG Watch
Urbane as the (real) wearable device. We also use an old
phone, Galaxy S2 released in 2011, to emulate head-mount
devices such as Vuzix M1000 [53] that shares hardware sim-
ilar to Galaxy S2. Table 2 elaborates the hardware specifica-
tions of these three devices used in this study. We use
TensorFlow [20] and an open-source library RSTensor-
Flow [54] to support running DL tasks on mobile CPU and
GPU. We use Bluetooth for the data transfer between wear-
able and handheld due to Bluetooth’s wide availability on
wearable and its energy efficiency.1 For energy measure-
ment, we build the power model for the smartphone by
using the Monsoon Power Meter [56] (following a high-level
approach of component-based power modeling [57]), or
obtain the model from the literature [16] for smartwatch.
All experiments are carried out by fixing the distance
between the wearable and handheld (0.5m) unless other-
wise stated.

Factors of Determining Offloading Decisions. Fig. 1 and 2
indicate the latency breakdown of four popular DL models
under different offloading scenarios. In each plot, the two
left columns present the latency of executing the whole
model on different wearable devices (LG Urbane and S2),
while the two right columns show the latency of offloading
them to handheld processors (CPU and GPU respectively).
The percentage indicates the proportion of computation
time (as opposed to network delay) within the overall
latency. Our key observation is that although offloading to
handheld CPU and GPU can dramatically reduce the computa-
tion time, e.g., more than 10 times for the GoogLeNet model, the
end-to-end latency is often not reduced due to the high data trans-
fer latency over Bluetooth. The results indicate that making a
judicious offloading decision can have significant impacts
on the user experience. For example, running the DeepEar
model locally on LG Urbane can reduce up to 74 percent of
latency compared to running it on handheld CPU, while for
the DeepSense model, running it locally leads to more delay
compared to offloading to a handheld.

TABLE 1
Eight Deep Learning Models Used in this Work

Model App Input FLOPs

MNIST [41] digit recognition grayscale image 15M
MobileNet [30] image classification rgb image 580M
GoogLeNet [42] image classification rgb image 2G
LSTM-HAR [43] activity recognition mobile sensor 180M
DeepSense [44] activity recognition mobile sensor 550M
TextRNN [45] document classification word vectors 11M
DeepEar [6] emotion recognition raw sound 9M
WaveNet [46] speech recognition mfcc features 3.8G

TABLE 2
Hardware Specifications for Wearables and

Smartphones Used in this Work

Device CPU Memory GPU

Nexus 6 Quad-core Krait 450 3 GB RAM Adreno 420
LG Urbane Quad-core Cortex-A7 512MB RAM Adreno 305
Galaxy S2 Dual-core Cortex-A9 1GB RAM Mali-400MP4

1. Also, Google has recommended it as the proper way of perform-
ing data communication on wearable devices [55].

XU ET AL.: DEEPWEAR: ADAPTIVE LOCAL OFFLOADING FOR ON-WEARABLE DEEP LEARNING 317

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

Overall, the optimal decision depends on various factors
described below.

(1) Device heterogeneity. There exist diverse wearable
devices with highly heterogeneous hardware, rang-
ing from a tiny smart ring to a large head-mount
device for virtual reality. For example, our experi-
ments show that for LG Urbane and Galaxy S2, they
often need to adopt different offloading strategies: to
achieve the lowest latency for the GoogLeNet model,
LG Urbane should offload the task to Nexus 6 while
Galaxy S2 does not need to do so according to
Fig. 1a.

(2) Model structure. Different DL models can vary a lot in
terms of computational overhead and input size.
Models with high a computational overhead and a
small input size such as DeepSense and WaveNet are
more adequate for being offloaded to handhelds,
while other models may not benefit from offloading
such as DeepEar.

(3) Processor status. In real-world application scenarios,
handheld CPUs often run under different governors
adapting to different device environments, e.g.,
switching from the default interactive governor (high
frequency) to the powersave governor (low frequency)
when the screen is turned off or the battery level is

low. Observed from Fig. 2, CPU status can have sub-
stantial impacts on the latency as well as the offload-
ing strategy. Take WaveNet as an example. It takes
almost 7X more time under the powersave governor
than the interactive governor, with the former render-
ing offloading no longer beneficial. While enforcing
the handheld to switch to a high-power governor is
sometimes possible, there are other scenarios where
the handheld CPU/GPU is inherently overloaded
(e.g., by other computationally intensive apps that
are running concurrently).

(4) Latency versus energy preference. Besides the end-to-
end latency, the energy consumption is another key
metric to consider as wearable devices have small
battery capacities [16]. As shown in Fig. 3, although
offloading can help save wearable battery, it will
also cause the non-trivial energy consumption for
the handheld (around 2.9 J for Nexus 6 CPU for
GoogLeNet).

Overall, the above results indicate the challenge of balanc-
ing the tradeoff among three factors when making judicious off-
loading decisions: end-to-end latency, energy consumption of the
wearable, and energy consumption of the handheld. In real-world
scenarios, a static policy may not always satisfy users’
requirements. For instance, when a user’s handheld (wear-
able) is low on battery, DeepWear needs to focus on saving

Fig. 1. End-to-end latency breakdown for different models and offloading scenarios. The upper percentage indicates the proportion of computation
time among the overall latency. Offloading to the handheld is often slower than wearable execution due to the high data transfer delay via Bluetooth.

Fig. 2. End-to-end latency breakdown under different handheld CPU governor. The upper percentage indicates the proportion of computation time
among the overall latency. The device status such as current CPU governor can have key impacts on making choice about offloading.

Fig. 3. Energy breakdown on both wearable and handheld devices for different running strategy. Offloading to the handheld can sometimes consume
more energy than wearable execution due to the high energy overhead consumed by Bluetooth module.

318 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

the energy for the handheld (wearable). Therefore it is nec-
essarily beneficial to adjust the offloading decisions dynam-
ically based on external factors such as battery life, network
condition, and CPU/GPU workload.

Partial offloading. The preceding pilot experiments con-
sider only two scenarios: offloading the whole DL model to
the handheld or executing it locally. Our further investiga-
tion indicates that partial offloading, i.e., dividing the DL
model into two sub-models and executing them separately
on the wearable and the handheld as shown in Fig. 4, can
sometimes achieve even better results.

We confirm the benefit of partial offloading through con-
trolled experiments. Fig. 5 plots the energy consumption
with different partition points for the GoogLeNet model. The
X-axis presents the layer that we select as partition point,
after which the output data is sent to handheld for further
processing. The left-most and right-most bars correspond to
handheld-only and wearable-only processing, respectively.
Note that the energy consumption of the handheld in Fig. 5
(and all energy results thereafter) is calibrated as
E ¼ original E=Handheld capacity �Wearable capacity.
original E is the absolute energy consumed by the hand-
held; Handheld capacity and Wearable capacity are the bat-
tery capacity of the handheld (3,220 mAh for Nexus 6) and
the wearable (410 mAh for LG Urbane), respectively. Since
the phone and watch have different battery capacities, the
above adjustment essentially calibrates the phone and wear-
able’s energy consumption with respect to their heteroge-
neous actual battery capacities.

As shown in Fig. 5, executing the model locally without
offloading is the most energy-efficient for the handheld,
while offloading the whole task to the handheld consumes
the least amount of energy for the wearable. However, users
often care about the battery life of both devices, therefore we
need to find an optimal partition to achieve the least total
energy consumption. In this case, the overall optimal

partition point resides in an internal layer (L16). Doing such
a partial offloading helps save around 84 and 29 percent of
energy compared to the wearable-only and handheld-only
strategies, respectively.

Using the same setup as that in Figs. 5 and 6 plots the
end-to-end latency with different partition points for the
GoogLeNet model. As shown, performing partial offloading
may also help minimize the overall latency (L14 in Fig. 6).
This is because an internal layer may yield a small interme-
diate output compared to the original input size, thus
reducing the network transmission delay. Therefore, a key
design decision we make for DeepWear is to support partial
offloading.

4 THE DEEPWEAR DESIGN

Our measurements in Section 3 indicate that it is challenging
to develop an offloading framework for wearables with vari-
ous factors being considered. We thus argue that flexible and
efficient DL offloading support should be provided as a
ready-made service to all applications, as opposed to being
handled by app developers in an ad-hoc manner. To this end,
we propose a holistic framework calledDeepWear, which can
help applications optimally determine whether or not, how, and
what to offload. We now describe the design details of Deep-
Wearwhose design goals include the following.

� Latency-aware. Different DL apps have diverse
latency requirements, ranging from dozens of
milliseconds (augmented reality) to several minutes
(activity tracking). As a result, DeepWear should
meet the appropriate user-perceived latency require-
ment, which is given by app developers, as the fore-
most goal to satisfy.

� Working with off-the-shelf DLModels.DeepWear should
not require developers’ additional efforts to retrain the
deep learning models. This is important as most app
developers today utilize only off-the-shelf models in
an “as-it-is” style.

� No accuracy loss. DeepWear should not compromise
the accuracy when running DLmodels under diverse
settings. In other words, DeepWear should maintain
consistently adequate accuracy results regardless of
the offloading decision.

� Trade-off flexible. DeepWear should flexibly balance
the tradeoff between the latency and energy based
on external factors such as the device battery life on
both the wearable and handheld devices.

� Developer-friendly. DeepWear should provide deve-
lopers with simple API, as simple as the facilities

Fig. 4. Different wearable DL execution approaches: wearable-only (off-
load nothing), handheld-only (offload everything), and DeepWear (partial
offloading). Offloading nothing means executing all DL task on wearable.
Offloading everything means offloading all DL task to handheld. Partial
offloading, which is adopted in DeepWear, means partitioning computa-
tion among wearable and handheld.

Fig. 5. Energy consumption of running GoogLeNet on LG Urbane and
Nexus 6 with different partition points. We only select 20 partition points
to present the figure. X-axis presents the layers that we select as parti-
tion point, after which output data is sent to handheld for continuous
processing. The left-most bar represents handheld-only processing and
the right-most bar represents wearable-only processing.

Fig. 6. End-to-end latency of running GoogLeNet on LG Urbane and
Nexus 6 with different partition points. The experimental setup is the
same as that in Fig. 5.

XU ET AL.: DEEPWEAR: ADAPTIVE LOCAL OFFLOADING FOR ON-WEARABLE DEEP LEARNING 319

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

provided off-the-shelf deep-learning frameworks/
libraries such as TensorFlow, Caffe2, PyTorch,
etc. More specifically, DeepWear should abstract
wearable and handheld devices as one entity by
shielding low-level details such as offloading deci-
sions. For example, developers should be freed
from programming on the data transferring via
the Android APIs, which is extremely tedious and
error-prone.

4.1 Architecture Overview

The overall architecture of DeepWear is shown in Fig. 7. To
use DeepWear, there are two main steps involved.

(1) The offline training phase involves a one-time effort of
constructing the latency and energy prediction mod-
els,2 i.e., given a DL model structure, what is the
end-to-end latency and energy consumption to run
this model on a given device (see Section 4.2). It
should be mentioned that, the latency and energy
prediction models are device-specific and heavily
depend on the underlying hardware architecture.
However, building such a model is a one-time effort
and does not incur much engineering overhead
based on our experience. In practice, the device or
DL software vendors can perform such profiling and
let developers download the model.

(2) The runtime phase, where DL applications rely on
DeepWear to perform adaptive offloading for DL
tasks. There are following major components.

� Decision Maker is the core part of DeepWear. Given a
DLmodel to run, it identifies the optimalmodel parti-
tion point based on the latency/energy prediction
models and both devices’ running status. The deci-
sion dictates which part of the model should be exe-
cuted locally and which part should be offloaded to
the paired handheld, including two special cases of
offloading none or the entire task. A key logic of the
DecisionMaker is to balance the tradeoff between the
latency and the energy consumption (see Section 4.3).

� System Profiler periodically profiles the system status
such as the pairing state, processor status, and the
Bluetooth bandwidth, which will be used by the
Decision Maker to balance key tradeoffs.

� DL Algorithms Driver is the library that implements
the DL algorithms. Currently, DeepWear directly
employs TensorFlow [20] as the driver.

� Data Transmission Manager deals with the data trans-
mission between the wearable and its paired hand-
held. It is realized using the standard Data Layer
API [55] in Android.

� Developer API Wrapper is the developer interface
through which DL applications can be easily devel-
oped to use the deep learning libraries with transpar-
ent offloading support. We present the design details
in Section 4.5.

4.2 Deriving Prediction Models

Now we consider how to construct the prediction model
of the latency and energy for a given (partial) DL model.
A straightforward way is modeling each layer individually
and then combining the prediction models across all layers
into the final prediction model. To demonstrate the fea-
sibility of this approach, we carried out controlled exp-
eriments via running DL models and logging the latency/
energy in total as well as for each layer.3 Through this con-
trolled experiment, we find that to compute the latency/
energy consumption of a given (possibly partial) DL model,
we can compute the incurred latency/energy for every sin-
gle layer and then sum them up. In fact, summing up the
latency/energy across all layers yields no more than 1.82
percent of deviation compared to the direct measurement,
for the eight models shown in Table 1.

Nevertheless, we still need to deal with a practical chal-
lenge: there exist a large number of layer types inside a DL
model (e.g., more than 100 types supported in TensorFlow).
As a result, making a prediction model for each of them can
incur substantial training overhead. Fortunately, we find
that among those hundreds of layer types, only a small
number of them are responsible for typical workloads on
wearables: convolutional (conv), fully-connected (fc), pool-
ing, and activation layers. As shown in Table 3, these four
layer types constitute up to more than 90 percent of the
inference latency of popular DL models. Although current
DeepWear considers only these layers, other layer types can
be easily incorporated into our framework. It is quite impor-
tant to note that for RNN models, a recurrent layer is
composed of fully-connected layer and activation layer.
Therefore, by modeling the aforementioned layers, i.e., con-
volutional, fully-connected, pooling, and activation layers,
we are able to accommodate the RNN model as well. We
next describe the methodology of building a prediction
model of latency/energy for a given layer.

Fig. 7. Overview of DeepWear. Grey parts constitute a library provided for deep learning application developers.

2. The latency and energy prediction models should be distin-
guished from the DL models themselves.

3. Built-in TensorFlow functionality to log individual layer perfor-
mance: https://github.com/tensorflow/tensorflow/blob/master/
tensorflow/core/util/stat_summarizer.h

320 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/stat_summarizer.h
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/util/stat_summarizer.h

Latency Prediction. We observe that even for the same
layer type, there might be a large latency variation across
different layer parameters (e.g., the kernel sizes of convolu-
tion layers). Thus, we vary the configurable parameters of
the layer and measure the latency for each parameter com-
bination. We use the collected latency data to train and test
our prediction models. As shown in Table 4, we use a com-
bination of decision tree and linear regression to model the
latency. The former is used to classify some types (i.e., con-
volution, pooling, and activation) into sub-types based on
metrics such as the kernel size4 and the activation function.
We then apply a linear-regression model to each of those
sub-types to get the final predicted results. As shown in
Table 4, our latency prediction models perform well, espe-
cially for the two most computation-intensive layers: convo-
lution and fc, with a high variance score of 0.993 and 0.945,
respectively. Here, we use the Coefficient of Determination
(R2) [58] to measure the accuracy. R2 is a commonly used
metric for evaluating regression models. It assesses how
well a model predicts future outcomes. R2 is calculated as
1� SSE

SST where SSE and SST are the sum of squared errors
of the regression model and the sum of squared errors of
the baseline model (always using the mean as the predic-
tion), respectively.

Energy Prediction. We use a similar approach to predict-
ing the energy consumption of a layer. In our study, we
typically build power models for the smartphone by using
the Monsoon Power Meter [56] (following a high-level
approach of component-based power modeling [57]) or
obtain them from the literature [16] for smartwatch. All
experiments are done with device screen off, and the energy
data we used is subtracted by the baseline power in the
idle state.

As shown in Table 4, our energy prediction model also
has a satisfactory accuracy (> 92 percent) for 3 out of the 4
layer types. The Pooling layer has a lower accuracy (0.772).
Nevertheless, as shown in Table 4 this layer contributes lit-
tle to the overall latency and energy compared to other
layers.

4.3 Making Offloading Decision

Utilizing the prediction models described above, DeepWear
dynamically selects the optimal partition point. The decision
making procedure involves two steps: finding a set of possi-
ble partitions for a given graph, and identifying the optimal
one among them.

Dynamic Partition. A DL model can be abstracted as a
Directed Acyclic Graph (DAG) with the source (input) and
the sink (output) nodes, where each node represents a layer
and each edge represents the data flow among those layers.
A valid partition equals to a cut [59] of the DAG and
requires the source and the sink to be placed in different
subsets. Finding all cuts of a given graph shall need the
Oð2nÞ complexity where n is the number of nodes. For a
large DL model, e.g., the GoogLeNetmodel with 1,096 nodes,
such a complexity is prohibitive. As pointed out previously
by Kang et al. [24], existing DL-partition approaches simply
assume these graphs are linear. Hence, each single edge rep-
resents a valid partition point. However, we observe that
such an assumption is not always true for many popular DL
models (e.g., GoogLeNet), as there can be branches and inter-
sections in the graph. This motivates us to design a heuris-
tic-based algorithm that efficiently computes a set of
“representative” cuts for a general graph of a DL model, as
to be described below.

Algorithm 1. DeepWear Partition Algorithm.

Input: G: pre-trained graph to be executed
pðGÞ: binary-partition function, returns a list of partitions
hGw;Gh; dti, where dt is the size of data to be transferred
fðG;SÞ; gðG;SÞ: pre-trained models for predicting the
latency/energy of executing G under device status s
Sw, Sh: current device running status for wearable and
handheld, including CPU frequency, CPU loads, etc
B: current Bluetooth uplink bandwidth
PR, PT: rx/tx power consumption over Bluetooth
PropT: proper latency that the app is supposed to run on
Ww,Wp: weights of battery for wearable and handheld
Output: Optimal partition choice

1 partitions pðGÞ; L ¼ E ¼ ;
2 foreach hGw;Gh; dti 2 partitions do
3 if streaming_opt_on then
4 l maxðfðGw;SwÞ; fðGh;SpÞ þ dt=BÞ
5 else
6 l fðGw;SwÞ þ fðGh;SpÞ þ dt=B
7 Ew gðGw;SwÞ þ dt � PT
8 Ep gðGh;SpÞ þ dt � PR
9 L:appendðlÞ; E:appendðWw � Ew þWp � EpÞ
10 end
11 if PropT == 0 orminðLÞ > PropT then
12 opt index argmini2f1...NgðL½i�Þ
13 else if PropT ¼¼ þ1 then
14 opt index argmini2f1...NgðE½i�Þ
15 else
16 R list of index i that satisfies L[i]4PropT
17 opt index argmini2RðE½i�Þ
18 return partitions½opt index�;

Fig. 8 illustrates how our algorithm works. First,
DeepWear prunes all computationally light nodes, only
keeping the computationally heavy nodes such as those
shown in Table 4. After identifying these light nodes,
DeepWear removes them and connects their input nodes
and output nodes. Second, we observe that a DL (e.g., CNN
and RNN) model often has repeated subgraph structures,
which we call “frequent subgraphs”, that frequently appear
in the DAG. DeepWear thus bundles each frequent

TABLE 3
The Major Latency Composition

Model Conv Fc Pooling Activation Total

MNIST 39.0% 54.2% 1.1% 3.1% 97.4%
MobileNet 45.4% N.A. N.A. 51.1% 96.5%
GoogLeNet 80.2% 0.1% 7.5% 8.1% 95.7%
LSTM-HAR N.A. 8.4% N.A. 87.8% 96.2%
DeepSense 51.6% 21.1% N.A. 25.3% 98.0%
TextRNN N.A. 16.0% N.A. 79.1% 95.1%
DeepEar N.A. 92.6% N.A. 7.2% 99.8%
WaveNet 82.6% N.A. N.A. 11.6% 94.1%

4. We observe that there are only limited kinds of kernel size used in
current CNNmodels, which is 1X1, 3X3, 5X5, 7X7, and 11X11.

XU ET AL.: DEEPWEAR: ADAPTIVE LOCAL OFFLOADING FOR ON-WEARABLE DEEP LEARNING 321

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

subgraph into one virtual node without further splitting. To
mine the frequent subgraphs, i.e., detecting the frequent
patterns in a model and the nodes associated with those pat-
terns, the most straightforward way is to utilize the node
namespace: nodes under the same namespace are often in the
same subgraph. However, the idea of namespace is not sup-
ported in all DL frameworks; more importantly, setting the
namespaces is rather subjective and optional, and requires
developers’ additional support. We utilize GRAMI [60], a
fast and versatile algorithm that automatically mines fre-
quent subgraphs. After the graph is simplified, there will be
much fewer nodes (e.g., 1,096 to 35 for GoogLeNet). Addi-
tionally, the graph exhibits a mostly linear structure. This
allows us to apply a brute-force approach to identifying all
cuts. In addition, this simplification results can be cached
for every single DL model and reused. We empirically
observed that our heuristic-based partition identification
approach is effective and robust.

Optimal Partition Selection. The algorithm for determining
an optimal partition is demonstrated in Algorithm 1. Taking
as input possible partitions generated in the previous step,
DeepWear analyzes the partitioned subgraphs on the wear-
able and the handheld, and uses the prediction models
(Section 4.2) to estimate the corresponding latency and
energy consumption (line 2�10). Note that the overall
energy consumption metric is a weighted mean from the
energy consumed on both the wearable and handheld. Our
algorithm provides a general framework for diverse usage
scenarios. If the DL app integrated with DeepWear is
latency-sensitive specified by developers, we select the

partition with the smallest latency (line 11�12). In contrast,
if the app is latency-insensitive, then we select the partition
with the lowest energy consumption (line 13�14). In a more
general case, the developer is able to quantitatively specify
the latency requirement. We then select the most energy-
efficient partition satisfying this requirement (line 15�17).

The models and parameters in Algorithm 1 are obtained
from various sources and can be classified into four types:
(1) offline-training models, including the latency and energy
prediction models (f, g), as well as the power model of Blue-
tooth data transfer (PR, PT), (2) runtime-profiling parame-
ters gathered by the System Profiler module (Section 4.1),
including the handheld status ðSÞ and Bluetooth bandwidth
(B), (3) application-specified parameters, including the
expected end-to-end latency of DL inference (PropT), (4)
configurable trade-off parameters, including energy con-
sumption weights on wearable and handheld (Ww,Wp).

4.4 Optimizing Streaming Data Processing

DL tasks such as video stream analysis for augmented real-
ity and speech recognition will become common on wear-
able devices. In these tasks, the input consists of a stream of
data such as video frames and audio snippets that are con-
tinuously fed into the same model. Here we use “frame” to
denote an input unit for a DL model, e.g., an image or an
audio snippet. Compared to non-streaming data, streaming
data cares more about the overall throughput, i.e., how
many frames can be processed per time unit, rather than the
latency for every single frame. For the non-streaming input,
the data dependency between two partitioned sub-models

Fig. 8. Example of how DeepWear simplifies GoogLeNet. Each node presents a layer, while each edge presents the data flow among those layers.
Dash lines indicate many more nodes are hidden to save space. DeepWear first prunes the model graph by keeping only the computation-intensive
nodes (as listed in Table 3), and then grouping the repeated subgraphs together. After these two steps, a complex directed acyclic graph often
becomes a linear and much simpler graph.

TABLE 4
Our Latency & Energy Prediction Models for Different Kinds of DL Layers and the Prediction Results

Layer Type Prediction Model Latency Acc. Energy Acc.

Conv decision tree input: filter_size, linear regression input: batch � input_width �
input_height � channel � kernel_number � stride2

0.993 0.973

Pooling decision tree input: filter_size, linear regression input: batch � input_width �
input_height � channel � kernel_number � stride2

0.784 0.772

Fully-
connected

linear regression input: a_width � a_height � b_width, a_width � a_height, b_width �
b_height

0.945 0.922

Activation decision tree input: activation function type, linear regression input: input_size 0.998 0.970

We use coefficient of determination R2 as the metric to evaluate the accuracy of our prediction models (best possible score is 1.0).

322 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

makes pipelined or parallel processing impossible: when
the wearable is processing the first part of the model, the
handheld has to wait for its output that serves as the input
to the second part of the model to be executed on the hand-
held. For streamed input, however, DeepWear employs
pipelined processing on wearable and handheld. Specifically,
when the nth frame finishes computing on the wearable
and being sent to the handheld, the wearable can immedi-
ately start processing the ðnþ 1Þth frame, and so on.

Pipelining helps fully utilize the computation resources
on both devices and thus effectively improves the overall
throughput. To integrate the pipelining support into our
partition-decision algorithm, we revise the end-to-end
latency calculation in Algorithm 3.1 as the maximum of the
wearable computation delay and the handheld computation
delay along with the data transmission delay (Line 4). In
other words, due to pipelining, the amortized end-to-end
latency is determined by the processing delay on either
device, whichever is longer.

4.5 Provided Developer APIs

DeepWear exposes a set of easy-to-useAPIs for developers for
running the model inference, as listed in the code snippet in
List 1. The high-level design principle of such APIs is to mini-
mize the developers’ additional overhead including learning
curve and programming efforts. Therefore, low-level details
of whether/when/how to offload should be completely
transparent to developers. As a result, the exposed interfaces
are almost the same as a conventional DL library such as Ten-
sorFlow. The only new knob DeepWear provides is a hint
function for specifying the latency requirement (Line 3 in
List 1), which helps DeepWearmake offloading decisions.

Listing 1. A Code Sample of using DeepWear

1 DeepWearInference infer =

2 new DeepWearInference(’’/path/to/model’’);

3 infer.set_expected_latency(100); // 100ms

4 infer.feed(input_name, input_data);

5 infer.run();

6 float[] result = infer.fetch(output_name);

As exemplified in the code snippet 1, using the APIs pro-
vided by DeepWear is quite similar to using the standard
Java APIs [61] provided by TensorFlow. It typically consists
of four steps: loading pre-trained model, feeding the input,
executing the graph, and finally fetching the output. Unlike
traditional general-purpose offloading frameworks, Deep-
Wear doesn’t require any manual annotation to specify
what can be offloaded. In contrast, DeepWear hides the off-
loading details from the perspective of developers.

5 IMPLEMENTATION OF DEEPWEAR

We have implemented DeepWear on commodity smart-
phone and smartwatches running off-the-shelf Android
and Android Wear OS respectively. Our prototyping efforts
consist of around 3,200 lines of code written in Java, exclud-
ing the scripts for constructing and analyzing prediction
models. Developers can easily integrate DeepWear into
their apps by importing the DeepWear library on both the
wearable side and the handheld side. In the one-time

initialization phase when the app is being installed, Deep-
Wear will also locate other necessary components such as
the DL models (stored at both the wearable and the hand-
held) and the latency/energy prediction models (stored at
the wearable). The handheld-side library also provides a
console allowing users to configure offloading policies as
described in Section 4.3).

Currently, DeepWear employs the popular Tensor-
Flow [20] as our DL algorithms driver (Fig. 7). Other popu-
lar frameworks such as Caffe2 [62] and PyTorch [63] can
also be easily integrated into DeepWear with very small
adaptation. To realize the System Profiler, DeepWear
obtains the processor status via the sysfs interface. More spe-
cifically, the CPU information can be obtained from /sys/

devices/system/cpu/ on both the smartphone and the
smartwatch. For GPU on smartphones, the hardware driver
exposes the information such as the total running time and
busy time. On the Nexus 6 model, such information can be
obtained from /sys/class/kgsl/kgsl-3d0/. The data
communication between wearable and handheld is realized
by the standard Android Wearable Data Layer API [55].
Specifically, we use the Message API [64] for the message
exchange in the control channel, and use DataItem & Asset
APIs for transferring computation results and intermediate
data (when the DL model is partitioned across the two devi-
ces). The Bluetooth bandwidth profiling is performed either
passively (by measuring the offloaded data transfer) or
actively (by sending lightweight probing packets). The
active probing is triggered periodically (every 1 minute by
default) as well as by Bluetooth signal strength changes, in
the absence of offloading transfers. We are currently work-
ing on adding Direct WiFi support for offloading.

6 EVALUATION

We now comprehensively evaluate DeepWear using the
aforementioned 8 popular DL models under different
device configurations. The experimental setup is the same
as that used in Section 3. Each experiment is repeated for 20
times to make the results statistically meaningful.

6.1 Partition Selection Accuracy

Table 5 shows the partition points selected by DeepWear
under different devices and DL models. Each cell represents
theDL layer name atwhichDeepWear performs the partition,
indicating that the output data of this layer shall be offloaded
to the handheld. The red block indicates that DeepWear fails
to make the optimal partition choice. Here, an “optimal” par-
tition choice means that it outperforms all other partition
choices for the specified goal, e.g., end-to-end latency when
PropT equals to 0 in our case. We obtain the optimal partition
choice by exhaustively testing each possible partition point.
In summary, DeepWear is able to select the best partition
point for 47 out of 48 cases we tested (97.9 percent). The mis-
predictions occur because of two reasons. First, our prediction
models used in DeepWear consider only a subset of layer
types as explained in Section 4.2. Second, those prediction
models themselves cannot perfectly predict the delay or
energy. Also note that for all 3 suboptimal partition points in
Table 5, their delay and energy consumption are actually very
close to those of the optimal partitions.

XU ET AL.: DEEPWEAR: ADAPTIVE LOCAL OFFLOADING FOR ON-WEARABLE DEEP LEARNING 323

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

6.2 Latency and Energy Improvements

To demonstrate how DeepWear can help improve the end-
to-end latency and energy consumption, we test it under
two extreme cases: optimizing for latency (PropT ¼ 0) and
optimizing for energy (PropT ¼ þ1). We present the
results under 6 running scenarios about wearables (LG
Urbane and Galaxy S2) and handhelds (CPU-interactive,
CPU-powersave, and GPU). We compare the performance
of DeepWear with two baseline strategies: handheld-only
(offloading all tasks to the handheld) and wearable-only
(executing the entire model on the wearable without per-
forming offloading).

Speedup. Fig. 9 shows DeepWear’s execution speedup
(normalized) over the baseline strategies across 8 DL mod-
els and varied device specifications & status. Bars in dif-
ferent colors represent different hardware configurations.
LG and S2 are abbreviated for Urbane LG and Galaxy S2.
CPU-it, CPU-ps, and GPU refer to utilizing Nexus 6 under
CPU-interactive, CPU-powersave, and GPU on the hand-
held side, respectively. The black bar represents the
latency of handheld- or wearable-only approaches, and is
used as a baseline to normalize other approaches (normal-
ized to 1 itself). The red bar is the average speedup for
each model.

Fig. 9a shows that compared to the handheld-only strat-
egy, DeepWear can help reduce the latency for 6 out of 8
models, with an average improvement ranging from 1.01X
(WaveNet) to 4.37X (DeepEar). Similarly, Fig. 9b shows that
compared to the wearable-only strategy, DeepWear reduces
the latency of running 5 out of 8 models with an average

improvement ranging from 1.07X (MNIST) to 8.86X (Wave-
Net). For cases such as runningWaveNet on LG Urbane with
Nexus GPU 6 available, DeepWear can even speed up the
processing for more than 20 times (23.0X) compared to the
wearable-only strategy. Overall, DeepWear can improve
the latency by 2.62X and 1.95X on average compared to
wearable-only and handheld-only, respectively, across all
8 models.

Our another observation is that different models can
exhibit quite diverse results. We find that the execution
speedup achieved by DeepWear depends on two factors
related to the model structure: computation workloads and
data size. A model graph with small computation work-
loads (DeepEar, TextRNN) or with a large input data size
(image-processing applications such as GoogLeNet and
MobileNet) are unlikely to benefit from the offloading since
the performance bottleneck often resides in the data trans-
mission rather than the local processing. Hence, in these
cases, DeepWear can have significant improvements over
the handheld-only approach, but less improvement over
the wearable-only approach. In contrast, when running DL
models that require lots of computations on a relatively
small size of data, DeepWear exhibits more improvements
compared to the wearable-only approach rather than the
handheld-only approach.

Energy Saving. Similarly, Fig. 10a shows that compared to
handheld-only, DeepWear can help reduce the energy con-
sumption for 5 out of 8 models, with an average improve-
ment (the red bar) ranging from 8.3 percent (GoogLeNet) to
53.5 percent (DeepEar). Similarly, Fig. 10b illustrates that

Fig. 9. Normalized execution speedup of DeepWear to two naive strategies: handheld-only and wearable-only. We present the results under six con-
figurations for wearables (LG Urbane and Galaxy S2) and handhelds (CPU-interactive, CPU-powersave, and GPU). Note that numbers shown repre-
sent the relative speedup, with the handheld/wearable-only being the comparison baseline. We use configuration PropT ¼ 0, so that DeepWear will
chase for the smallest end-to-end latency. Results show that DeepWear can improve the latency by 1.95X and 2.62X on average compared to wear-
able-only and handheld-only, respectively. Additionally, the improvement can be up to 5.08X and 23.0X in some cases.

TABLE 5
DeepWear Partition Point Selections under Different Devices and Models (PropT ¼ 0)

Wearable Handheld
Models

MNIST GoogLeNet MobileNet WaveNet LSTM-HAR DeepSense TextRNN DeepEar

LG Urbane CPU-interactive input input Squeeze input input input BiasAdd output
CPU-powersave add_3 AvgPool_0a Squeeze input input input BiasAdd output
GPU input input Squeeze input input input BiasAdd output

Galaxy S2 CPU-interactive add_3 AvgPool_0a Squeeze input input input BiasAdd output
CPU-powersave add_3 Squeeze Squeeze logit/out input input BiasAdd output
GPU add_3 Squeeze Squeeze input input input BiasAdd output

Red blocks indicate DeepWear fails to make the optimal partition choice and white block means the optimal partition point is picked.

324 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

compared to wearable-only, DeepWear lowers the energy
consumption for 6 out of 8models, with an average improve-
ment ranging from 3.8 percent (TextRNN) to 85.5 percent
(WaveNet). Overall, DeepWear can on average save the
energy by 18.0 and 32.7 percent compared to the handheld-
only and thewearable-only approach, respectively.

6.3 Local Offloading versus Cloud Offloading

We also compare DeepWear’s local offloading approach to
offloading to the remote cloud. We use a server equipped
with Tesla K80 GPU, 2.3 GHz Intel Xeon CPU, and 60 GB
memory to play as the remote cloud.We carry out the experi-
ments under two WiFi conditions: poor (� 100 kbps) and
good (� 5mbps).5 The results are all normalized by thewear-
able-only performance (no offloading). Note that for cloud
offloading, we ignore the cloud server’s energy consumption.

For latency improvements, as shown in Fig. 14a, cloud off-
loading outperforms both local execution and DeepWear
under good network condition. However, when the network
condition becomes poor, cloud offloading is comparable
and sometimes performance-wise worse than DeepWear.
Regarding the energy consumption, as shown in Fig. 14b,
DeepWear can even outperform cloud offloading under
good network condition (WaveNet). The reason is that the
Internet access over WiFi is more energy-consuming than
accessing the handheld over local radio. Note that under cel-
lular network (e.g., LTE) the energy consumption can be
even more than WiFi, thus DeepWear is expected to exhibit
more improvements. Finally, recall that compared to cloud
offloading, DeepWear offers other benefits such as ubiqui-
tousness and better privacy as described in Section 1.

It’s worth mentioning that even though the cloud offload-
ing may perform better than DeepWear under many circum-
stances, offloading user data to cloud still suffers fromprivacy
concerns, since these data such as images, sensor output, and
audio used for these DL models often contain sensitive per-
sonal information. SinceDeepWear instead performs local off-
loading, it reduces such privacy concerns to theminimum.

6.4 Adaptive to Environment Dynamics

In this section, we evaluate DeepWear’s adaptiveness to
diverse factors that may vary in real-world environments:

the device battery level (Ww;Wp), the Bluetooth bandwidth
(B), and the processor load level (Sp). Our experimental
results show that DeepWear can effectively adapt to the
dynamics caused by these external factors.

Battery Level. As mentioned in Section 4.3, DeepWear’s
offloading decision should consider the battery level of both
the wearable and the handheld, in order to better balance
their battery life. This is achieved by tuning the parameters
Ww and Wp. We exemplify a possible policy as follows.
When the handheld is being charged, we focus on saving
the energy for wearable (i.e., Ww ¼ 1;Wp ¼ 0), whereas
when the handheld’s battery is running out, we should
more aggressively use the wearable’s battery (e.g., by set-
tingWw ¼ 0:2 andWp ¼ 0:8).

We test DeepWear’s robustness against the varying val-
ues of Ww and Wp (set to 1�Ww). As shown in Fig. 11,
the partition decision of DeepWear keeps changing accord-
ing to the configuration of energy weight. As a result,
DeepWear always consumes no more energy than either
the wearable-only or the handheld-only strategy. Taking
TextRNN as an example, when Ww is low (0 � 0.3), Deep-
Wear chooses to run the model locally as the wearable
energy is relatively “cheap”. When Ww becomes higher
(0.3 � 0.8), the model is partitioned and executed on both
sides. During this stage, DeepWear outperforms both wear-
able-only and handheld-only strategies. When Ww is high,
DeepWear offloads all workloads to the handheld to save
the energy of wearable. The results of MobileNet, another
example shown in Fig. 11b, are similar to TextRNN, except
that for MobileNet there is no partial offloading stage. Such a

Fig. 10. Normalized energy consumption of DeepWear to two naive strategies: handheld-only and wearable-only. We present the results under six
running scenarios about wearables (LG Urbane and Galaxy S2) and handhelds (CPU-interactive, CPU-powersave, and GPU). We use configuration
PropT ¼ þ1;Ww ¼ Wp ¼ 0:5, so that DeepWear will chase for the smallest energy consumption. Results show that DeepWear can save energy by
18.0 and 32.7 percent on average compared to the handheld-only and the wearable-only, respectively. Additionally, the improvement can be up to
53.5 and 85.5 percent in some cases. Note that the handheld energy consumption is calibrated using the method used for Fig. 5, in order to take into
consideration the phone and wearable’s heterogeneous battery capacities.

Fig. 11. Weighted energy consumption for different Ww and
Wp ¼ 1�Ww. Ww and Wp are the energy weight of the wearable
and the handheld, respectively. The Y -axis represents the weighted
sum of the energy consumption of both devices as Ww � Ew þWp � Ep.
We use Galaxy S2 and Nexus 6 CPU-powersave to carry out this
experiment.

5. We notice wearable’s WiFi connectivity is oftentimes slower than
phone due to wearable’s form factor (smaller antenna).

XU ET AL.: DEEPWEAR: ADAPTIVE LOCAL OFFLOADING FOR ON-WEARABLE DEEP LEARNING 325

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

difference stems from the different internal structure of
MobileNet.

Bluetooth Bandwidth. The Bluetooth bandwidth between
the wearable and the handheld can change dynamically
according to their distance. DeepWear profiles and takes
into account this bandwidth online for the partition deci-
sion. Fig. 12 shows how DeepWear reacts to the changing
bandwidth in consideration of end-to-end latency. As
observed from both Fig. 12a (the MNIST model) and
Fig. 12b (the GoogLeNet model), DeepWear tends to execute
the whole DL model locally when the bandwidth is low;
when the bandwidth is high, DeepWear performs offload-
ing more aggressively. Additionally, DeepWear also choo-
ses to partially offload the workload. For example, when
running MNIST with a bandwidth of 100 kbps to 140 kbps,
partial offloading leads to better performance than both the
wearable-only and the handheld-only strategies.

Handheld Processor Load Level. We then evaluate Deep-
Wear’s robustness against varying load level of the hand-
held processors (CPU and GPU). We use a script [65] to
generate CPU workloads, and use another application [66]
to generate GPU workloads by introducing background
graphics rendering. As shown in Fig. 13, when the processor
load is low, DeepWear always offloads the DL tasks to
handheld to make use of the under-utilized processing
power. In this stage, the performance of DeepWear is simi-
lar to handheld-only, and has significant latency reduction
compared to wearable-only (e.g., more than half a second
for LSTM-HAR model shown in Fig. 13b). When the hand-
held processor’s load increases, DeepWear chooses to exe-
cute workloads locally on the wearable device, as doing so
outperforms the handheld-only approach. For example,
when running MNIST with the handheld GPU load of
80 percent, DeepWear can reduce almost 50 percent of the
latency compared to the handheld-only strategy (188.2 ms
versus 99.8 ms).

6.5 Latency Awareness

We also evaluate how the developer-specified latency
(PropT) affects DeepWear’s decision on offloading. The
results are shown in Table 6. Overall, for 7 out of 9 configu-
rations, DeepWear can satisfy the latency requirement,
while the handheld-only and the wearable-only have only 4
and 6, respectively. The only case where DeepWear is
unable to provide the desired latency improvement, i.e.,
PropT = 2.0s for GoogLeNet, is unavoidable since even the
lowest possible latency is higher than PropT. In those cases,
DeepWear chooses to minimize the end-to-end latency and
ignore the energy consumption. In summary, in all cases,
DeepWear yields satisfactory results.

Another key observation from Table 6 is that DeepWear
can adaptively adjust its decisions based on applications’
requirements–a desirable feature in practice. Taking
TextRNN as an example. When PropT is low, DeepWear
keeps all workloads on the local wearable device to satisfy
(58.9 ms) the latency requirement (200 ms). This is the same
as what the wearable-only strategy does but the handheld-
only strategy fails to achieve. When PropT becomes higher
(300 ms), DeepWear chooses different partition points in
order to consume less energy than the wearable-only strat-
egy, while keeping a relatively low end-to-end latency.
Instead, the wearable-only strategy consumes 21.6 percent
more energy than DeepWear.

6.6 Handling Streaming Data

We also evaluate how the pipelining technique described
in Section 4.4 can help improve the throughput for
streaming data. As shown in Fig. 15, applying pipelining
in DeepWear can help improve the overall throughput by
43.75 percent averaged over the 8 models (the comparison
baseline is the basic DeepWear that treats each DL

Fig. 12. End-to-end latency across different B. We use Urbane LG and
Nexus 6 CPU-interactive to carry out this experiment. Fig. 13. End-to-end latency across different S. We use the Urbane LG

and the Nexus 6 (GPU and CPU) to carry out this experiment.

TABLE 6
End-to-End Latency and Energy Consumption (of both the Wearable and Handheld) of DeepWear

across Varied Developers-Specified Latency (PropT)

Model PropT
handheld-only wearable-only DeepWear

Selection Latency(ms) Energy(mJ) Selection Latency(ms) Energy(mJ) Selection Latency(ms) Energy(mJ)

TextRNN
200ms input 239.60 181.79 BiasAdd 58.90 218.28 BiasAdd 58.90 218.28
250ms cell/mul 238.78 194.32
300ms Sigmoid 256.90 179.45

GoogLeNet 2s�3s input 7,306.21 9,361.00 Squeeze 2,058.50 7,616.64 Squeeze 2,058.50 7,616.64
LSTM-HAR 1s�2s input 207.02 317.27 output 733.53 1,207.26 input 207.02 317.27

We use Galaxy S2 and Nexus 6 CPU-powersave to carry out this experiment. We setWw andWp as 0.5 equally.

326 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

instance separately). For some models such as MNIST, the
throughput improvement as high as 84 percent can be
achieved through pipelined processing. We observe that
the throughput boost depends on the processing time dif-
ference between the wearable and the handheld. For
models that exhibit large performance difference, apply-
ing pipelining achieves less improvement. For example,
running WaveNet locally yields a latency of 7.7s on
Urbane LG, almost 13 times higher than that achieved by
offloading to Nexus CPU (0.54s). As a result, applying
pipelining increases the throughput by only 5 percent.
This is because when the processing capabilities of the
wearable and handheld differ significantly, the little con-
tribution of the weaker device (typically the wearable)
makes pipelining fallback to the handheld-only strategy.
In contrast, for models that exhibit similar performance
on the wearable and the handheld, pipelining leads to a
much higher throughput improvement (84 percent for
MNIST model).

6.7 System Overhead

DeepWear incurs the computation overhead of executing
the partition algorithm (Section 4.3). We have measured all
8 DL models under different configurations. The incurred
overhead in terms of the fraction of latency is low, ranging
from 0.49 percent (GoogLeNet) to 4.21 percent (TextRNN).
The reason for such low overhead is multifold. First, our
heuristic-based algorithm, as presented in Section 4.3, can
reduce the computation complexity to almost OðnÞ, where n
is the number of DL model nodes. Second, the original DL
computation is already heavy-load, making the overhead
relatively trivial.

Another source of overhead comes from the System Pro-
filer. Our measurements indicate that such an overhead is
non-trivial when the Bluetooth bandwidth is measured pas-
sively. DeepWear can optionally measure the Bluetooth
bandwidth through active probing (Section 5). In that case
the energy overhead is less than 5 percent for the wearable.
The overhead can be further reduced by using Bluetooth
Low Energy as instead of classic Bluetooth.

7 LIMITATIONS

We discuss some limitations of DeepWear and highlight
several future research directions.

� DeepWear currently focuses on the inference stage
as opposed to the training stage. In deep learning,
which requires a pre-trained model integrated into
applications or downloaded in advance. Although
performing inference may be sufficient for most
applications, we also notice that in recent years there
have emerged requirements to train (consume) the
data immediately when it is produced on wearable
devices. We plan to extend DeepWear for the model
training phase. The challenging issues for support-
ing the model training in DeepWear are in two folds.
(1) Designing new latency and energy prediction
models for the training procedure (e.g., based on the
backpropagation algorithm). (2) Designing new off-
loading decision algorithms. Since the training phase
requires both the forward and backward data flow
in our model graph, it is not immediately clear how
much benefits partial offloading can reward, which
shall be further explored in our future work.

� DeepWear makes partition decision based on two key
metrics of user experience: the end-to-end latency and
the energy consumption. Besides them, other metrics
such as memory usage (both average and peak) is
another important metric that should be taken into
account [19]. We plan to consider memory as a devel-
oper-specified policy similar to the latency (PropT).
This extension can be integrated into DeepWear via a
runtime predicator ofmemory usage for different par-
titions and a new set of APIs for developers.

� We have tested DeepWear on only 3 devices (LG
Urbane, Galaxy S2, and Nexus 6) and 8 widely used
DL models. Though These models are representative
and widely used, we plan to assess DeepWear more
broadly on other hardware platforms and DL
models.

� In many common scenarios, our offloading scheme in
DeepWear exhibits unique advantages over the cloud-
based offloading in terms of resource utilization, ubiq-
uitous access, and privacy preservation. However, we
should point out that due to the limited processing
capacity on handheld devices, DeepWear might still
suffer from poor performance. For example, there are
other concurrent workload (typically as background
services) running on a handheld, or the DL task is too

Fig. 14. Compare DeepWear to cloud offloading.

Fig. 15. Throughput of DeepWear with pipelined processing. Results are
normalized by DeepWear without pipelining. We use the Urbane LG and
the Nexus 6 CPU-interactive to carry out this experiment.

XU ET AL.: DEEPWEAR: ADAPTIVE LOCAL OFFLOADING FOR ON-WEARABLE DEEP LEARNING 327

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

heavyweight to be carried out on a handheld. Future
work towards such problems includes adaptively off-
loading DL tasks to multiple personal mobile devices
(e.g., a smartphone, a tablet, and a laptop), as well as
using the cloud as an alternative offloading target
when local resources are too insufficient while the pri-
vacy is not a critical concern.

8 CONCLUSION

Wearables provide an important data source for numerous
applications that can be powered by DL tasks. To enable
efficient DL on wearables, We have developed DeepWear, a
practical DL framework designed for wearables. DeepWear
can intelligently, transparently, and adaptively offload DL
computations from a wearable to a paired handheld. It
introduces various novel techniques such as context-aware
offloading, strategic model partition, and pipelining sup-
ports to better utilize the processing capacity from the wear-
able’s nearby handhelds. Our evaluation on COTS devices
and popular DL models demonstrate DeepWear signifi-
cantly outperforms both wearable-only and handheld-only
approaches by striking a better balance among the latency
and the energy consumption on both sides. We believe that
the lessons learned from our DeepWear design and imp-
lementation will shed the light on developing future AI-
powered systems on mobile, wearable, and Internet-
of-things (IoT) applications. In our future work, in addition
to performing the tasks proposed in Section 7, we plan to
apply DeepWear to develop real-world DL applications for
off-the-shelf wearables. To help the research community
reproduce our study, we will release the source code of
DeepWear to be publicly available.

ACKNOWLEDGMENTS

This workwas supported by theNational Key R&DProgram
under the grant number 2018YFB1004800 and the National
Natural Science Foundation of China under grant number
61725201. Feng Qian’s research was supported in part by the
NSF grant CCF-1629347. Saumay Pushp’s research was
supported by the Basic Science Research Program
(2017R1A2B3010504) and Next-Generation Information
Computing Development Program (2017M3C4A7065963)
through the National Research Foundation of Korea (NRF)
funded by theMinistry of Science, ICT.

REFERENCES

[1] A. Mathur, N. D. Lane, S. Bhattacharya, A. Boran, C. Forlivesi, and
F. Kawsar, “DeepEye: Resource efficient local execution of multi-
ple deep vision models using wearable commodity hardware,” in
Proc. 15th Annu. Int. Conf. Mobile Syst. Appl. Serv., 2017, pp. 68–81.

[2] V. Radu, N. D. Lane, S. Bhattacharya, C. Mascolo, M. K. Marina,
and F. Kawsar, “Towards multimodal deep learning for activity
recognition on mobile devices,” in Proc. ACM Int. Joint Conf. Perva-
sive Ubiquitous Comput., 2016, pp. 185–188.

[3] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao,
L. Qendro, and F. Kawsar, “DeepX: A software accelerator
for low-power deep learning inference on mobile devices,” in
Proc. 15th ACM/IEEE Int. Conf. Inf. Process. Sensor Netw., 2016,
pp. 23:1–23:12.

[4] P. Georgiev, N. D. Lane, K. K. Rachuri, and C. Mascolo, “LEO:
Scheduling sensor inference algorithms across heterogeneous
mobile processors and network resources,” in Proc. 22nd Annu.
Int. Conf. Mobile Comput. Netw., 2016, pp. 320–333.

[5] S. Bhattacharya and N. D. Lane, “Sparsification and separation of
deep learning layers for constrained resource inference on wear-
ables,” in Proc. 14th ACM Conf. Embedded Netw. Sensor Syst., 2016,
pp. 176–189.

[6] N. D. Lane, P. Georgiev, and L. Qendro, “DeepEar: Robust smart-
phone audio sensing in unconstrained acoustic environments
using deep learning,” in Proc. ACM Int. Joint Conf. Pervasive Ubiq-
uitous Comput., 2015, pp. 283–294.

[7] N. D. Lane and P. Georgiev, “Can deep learning revolutionize
mobile sensing?” in Proc. 16th Int. Workshop Mobile Comput. Syst.
Appl., 2015, pp. 117–122.

[8] M. Xu, F. Qian, Q. Mei, K. Huang, and X. Liu, “DeepType: On-
device deep learning for input personalization service with mini-
mal privacy concern,” in Proc. ACM Interactive Mobile Wearable
Ubiquitous Technol., 2018, Art. no. 197.

[9] On-Device Machine Intelligence, 2016. [Online]. Available:
https://research.googleblog.com/2017/02/on-device-machine-
intelligence. html

[10] How Google Translate squeezes deep learning onto a phone, 2015.
[Online]. Available: https://research.googleblog.com/2015/07/
how-google-translate-squeezes-d eep.html

[11] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A First Look at
Deep Learning Apps on Smartphones,” in Proc. 28th Int. Conf.
World Wide Web, 2018, to be published.

[12] Smartwatch Market Size, Share, Growth, Industry Report, 2018–
2023, 2018. [Online]. Available: https://www.psmarketresearch.
com/market-analysis/smartwatch-market

[13] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making smartphones last longer
with code offload,” in Proc. 8th Int. Conf. Mobile Syst. Appl. Serv.,
2010, pp. 49–62.

[14] M. S. Gordon, D. K. Hong, P. M. Chen, J. Flinn, S. Mahlke, and
Z. M. Mao, “Accelerating mobile applications through flip-flop
replication,” in Proc. 13th Annu. Int. Conf. Mobile Syst. Appl. Serv.,
2015, pp. 137–150.

[15] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and
M. Satyanarayanan, “Towards wearable cognitive assistance,” in
Proc. 12th Annu. Int. Conf. Mobile Syst. Appl. Serv., 2014, pp. 68–81.

[16] X. Liu, T. Chen, F. Qian, Z. Guo, F. X. Lin, X. Wang, and K. Chen,
“Characterizing smartwatch usage in the wild,” in Proc. 15th
Annu. Int. Conf. Mobile Syst. Appl. Serv., 2017, pp. 385–398.

[17] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convo-
lutional neural networks for mobile devices,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 4820–4828.

[18] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for
efficient evaluation,” in Proc. Annu. Conf. Neural Inf. Process. Syst.,
2014, pp. 1269–1277.

[19] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and
A. Krishnamurthy, “MCDNN: An approximation-based execu-
tion framework for deep stream processing under resource con-
straints,” in Proc. 14th Annu. Int. Conf. Mobile Syst. Appl. Serv.,
2016, pp. 123–136.

[20] TensorFlow, 2017. [Online]. Available: https://www.tensorflow.
org/

[21] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
Elastic execution between mobile device and cloud,” in Proc. 6th
Eur. Conf. Comput. Syst., 2011, pp. 301–314.

[22] M. S. Gordon, D. A. Jamshidi, S. A. Mahlke, Z. M. Mao, and
X. Chen, “COMET: Code offload by migrating execution trans-
parently,” in Proc. 10th USENIX Symp. Operating Syst. Des. Imple-
mentation, 2012, pp. 93–106.

[23] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang,
“Refactoring Android Java code for on-demand computation off-
loading,” in Proc. 27th Annu. ACM SIGPLAN Conf. Object-Oriented
Program. Syst. Lang. Appl., 2012, pp. 233–248.

[24] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. N. Mudge, J. Mars,
and L. Tang, “Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge,” in Proc. 22nd Int. Conf. Archit. Support
Program. Lang. Operating Syst., 2017, pp. 615–629.

[25] J. Wang, J. Sun, H. Lin, H. Dong, and S. Zhang, “Convolutional
neural networks for expert recommendation in community
question answering,” Sci. China Inf. Sci., vol. 60, no. 11,
pp. 110 102:1–110 102:9, 2017.

[26] P. Li, M. Liu, X. Zhang, X. Hu, B. Pang, Z. Yao, and H. Chen, “Novel
wavelet neural network algorithm for continuous and noninvasive
dynamic estimation of blood pressure from photoplethysmography,”
Sci. China Inf. Sci., vol. 59, no. 4, pp. 042 405:1–042 405:10, 2016.

328 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

https://research.googleblog.com/2017/02/on-device-machine-intelligence. html
https://research.googleblog.com/2017/02/on-device-machine-intelligence. html
https://research.googleblog.com/2015/07/how-google-translate-squeezes-d eep.html
https://research.googleblog.com/2015/07/how-google-translate-squeezes-d eep.html
https://www.psmarketresearch.com/market-analysis/smartwatch-market
https://www.psmarketresearch.com/market-analysis/smartwatch-market
https://www.tensorflow.org/
https://www.tensorflow.org/

[27] W. Qu, D. Wang, S. Feng, Y. Zhang, and G. Yu, “A novel cross-
modal hashing algorithm based on multimodal deep learning,”
Sci. China Inf. Sci., vol. 60, no. 9, pp. 092 104:1–092 104:14, 2017.

[28] G. Chen, C. Parada, and G. Heigold, “Small-footprint keyword
spotting using deep neural networks,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process., 2014, pp. 4087–4091.

[29] E. Variani, X. Lei, E.McDermott, I. Lopez-Moreno, and J. Gonzalez-
Dominguez , “Deep neural networks for small footprint text-
dependent speaker verification,” in Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., 2014, pp. 4052–4056.

[30] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv: 1704.04861, 2017.

[31] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“DianNao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning,” in Proc. Archit. Support Program.
Lang. Operating Syst., 2014, pp. 269–284.

[32] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing FPGA-based accelerator design for deep convolu-
tional neural networks,” in Proc. ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays, 2015, pp. 161–170.

[33] Y. Chen, J. S. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in Proc.
43rdACM/IEEEAnnu. Int. Symp. Comput. Archit., 2016, pp. 367–379.

[34] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: Efficient inference engine on compressed deep
neural network,” in Proc. 43rd ACM/IEEE Annu. Int. Symp. Com-
put. Archit., 2016, pp. 243–254.

[35] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand
deep model compression for mobile devices: A usage-driven
model selection framework,” in Proc. 16th Annu. Int. Conf. Mobile
Syst. Appl. Serv., 2018, pp. 389–400.

[36] M. Xu, M. Zhu, Y. Liu, F. X. Lin, and X. Liu, “DeepCache: Princi-
pled cache for mobile deep vision,” in Proc. 24th Annu. Int. Conf.
Mobile Comput. Netw., 2018, pp. 129–144.

[37] L. Yang, J. Cao, Z. Wang, and W. Wu, “Network aware multi-user
computation partitioning in mobile edge clouds,” in Proc. 46th Int.
Conf. Parallel Process., 2017, pp. 302–311.

[38] L. Yang, B. Liu, J. Cao, Y. Sahni, and Z. Wang, “Joint computation
partitioning and resource allocation for latency sensitive applica-
tions in mobile edge clouds,” in Proc. 10th Int. Conf. Cloud Comput.,
2017, pp. 246–253.

[39] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, and
M. Satyanarayanan, “Quantifying the impact of edge computing
on mobile applications,” in Proc. 7th ACM SIGOPS Asia-Pacific
Workshop Syst., 2016, pp. 5:1–5:8.

[40] S. A. Ossia, A. S. Shamsabadi, A. Taheri, H. R. Rabiee, N. Lane,
and H. Haddadi, “A hybrid deep learning architecture for
privacy-preserving mobile analytics,” arXiv: 1703.02952, 2017,
https://arxiv.org/abs/1703.02952

[41] Deep MNIST tutorial, 2017. [Online]. Available: https://www.
tensorflow.org/get_started/mnist/pros

[42] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov,
D. Erhan,V. Vanhoucke, andA. Rabinovich, “Goingdeeperwith con-
volutions,” inProc. Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[43] LSTM for human activitiy recognition, 2017. [Online]. Available:
https://github.com/guillaume-chevalier/LSTM-Human-
Activity-Recognition

[44] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. F. Abdelzaher,
“DeepSense: A unified deep learning framework for time-series
mobile sensing data processing,” in Proc. 26th Int. Conf. World
Wide Web, 2017, pp. 351–360.

[45] Text ClassificationUsingRecurrentNeuralNetworks onWords, 2017.
[Online]. Available: https://github.com/tensorflow/tensorflow/
blob/master/tensorflow/examples/learn/text_classification.py

[46] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
“WaveNet: A generative model for raw audio,” arXiv:1609.03499,
2016, https://arxiv.org/abs/1609.03499

[47] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Proc. Annu. Conf. Neural Inf.
Process. Syst., 2014, pp. 3104–3112.

[48] D. Wang and E. Nyberg, “A long short-term memory model for
answer sentence selection in question answering,” in Proc. 53rd
Annu. Meeting Assoc. Comput. Linguistics and the 7th Int. Joint Conf.
Natural Lang. Process. Asian Federation Natural Lang. Process., 2015,
pp. 707–712.

[49] A. Graves, “Generating sequences with recurrent neural networks,”
arXiv:1308.0850, 2013, https://arxiv.org/abs/1308.0850

[50] D. Huang, L. Yang, and S. Zhang, “Dust: Real-time code offload-
ing system for wearable computing,” in Proc. IEEE Global Com-
mun. Conf., 2015, pp. 1–7.

[51] B. Shi, J. Yang, Z. Huang, and P. Hui, “Offloading guidelines for
augmented reality applications on wearable devices,” in Proc.
23rd Annu. ACM Conf. Multimedia Conf, 2015, pp. 1271–1274.

[52] J. Ko, J. Lee, and Y. Choi, “Poster: A novel computation offloading
technique for reducing energy consumption of smart watch,” in
Proc. 14th Annu. Int. Conf. Mobile Syst. Appl. Serv. Companion, 2016,
Art. no. 46.

[53] Vuzix M100 Smart Glasses, 2017. [Online]. Available: https://
www.vuzix.com/Products/M100-Smart-Glasses

[54] M. Alzantot, Y. Wang, Z. Ren, and M. B. Srivastava,
“RSTensorFlow: GPU enabled tensorflow for deep learning on
commodity android devices,” in Proc. 1st Int. Workshop Deep Learn.
Mobile Syst. Appl., 2017, pp. 7–12.

[55] Wearable Data Layer API, 2017. [Online]. Available: https://
developer.android.com/training/wearables/data-layer/index.
html

[56] Monsoon power meter, 2017. [Online]. Available: https://www.
msoon.com/LabEquipment/PowerMonitor/

[57] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and
L. Yang, “Accurate online power estimation and automatic bat-
tery behavior based power model generation for smartphones,” in
Proc. 8th Int. Conf. Hardware/Software Codes. Syst. Synthesis, 2010,
pp. 105–114.

[58] Coefficient of Determination (R-squared) Explained, 2018.
[Online]. Available: https://towardsdatascience.com/coefficient-
of-determination-r-squared-e xplained-db32700d924e

[59] Cut in graph theory, 2017. [Online]. Available: https://en.
wikipedia.org/wiki/Cut_(graph_theory)

[60] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis,
“GRAMI: Frequent subgraph and pattern mining in a single large
graph,” Proc. VLDB Endowment, vol. 7, no. 7, pp. 517–528, 2014.

[61] TensorFlow inference Java APIs, 2017. [Online]. Available:
https://github.com/tensorflow/tensorflow/blob/master/
tensorflow/contrib/android/java/org/tensorflow/contrib/
android/TensorFlowInferenceInterface.java

[62] Caffe2 deep learning framework, 2017. [Online]. Available:
https://github.com/caffe2/caffe2

[63] PyTorch, 2017. [Online]. Available: http://pytorch.org/
[64] Android Message API, 2017. [Online]. Available: https://

developer.android.com/reference/com/google/android/gms/
wearable /MessageApi.html

[65] A Programmable CPU Load Generator, 2012. [Online]. Available:
https://github.com/ptitiano/cpuloadgen

[66] G. Huang, M. Xu, F. X. Lin, Y. Liu, Y. Ma, S. Pushp, and X. Liu,
“ShuffleDog: Characterizing and adapting user-perceived latency
of Android apps,” IEEE Trans. Mobile Comput., vol. 16, no. 10,
pp. 2913–2926, Oct. 2017.

Mengwei Xu is working toward the PhD degree
in the School of Electronics Engineering and
Computer Science of Peking University, Beijing,
China. His research interests include mobile
computing and operating system.

Feng Qian is an assistant professor with the Com-
puter Science and Engineering Department, Uni-
versity of Minnesota–Twin Cities. His research
interests cover the broad areas of mobile systems,
VR/AR, computer networking, and systemsecurity.

XU ET AL.: DEEPWEAR: ADAPTIVE LOCAL OFFLOADING FOR ON-WEARABLE DEEP LEARNING 329

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/1703.02952
https://www.tensorflow.org/get_started/mnist/pros
https://www.tensorflow.org/get_started/mnist/pros
https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition
https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/learn/text_classification.py
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/learn/text_classification.py
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1308.0850
https://www.vuzix.com/Products/M100-Smart-Glasses
https://www.vuzix.com/Products/M100-Smart-Glasses
https://developer.android.com/training/wearables/data-layer/index.html
https://developer.android.com/training/wearables/data-layer/index.html
https://developer.android.com/training/wearables/data-layer/index.html
https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/
https://towardsdatascience.com/coefficient-of-determination-r-squared-e xplained-db32700d924e
https://towardsdatascience.com/coefficient-of-determination-r-squared-e xplained-db32700d924e
https://en.wikipedia.org/wiki/Cut_(graph_theory)
https://en.wikipedia.org/wiki/Cut_(graph_theory)
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/android/java/org/tensorflow/contrib/android/TensorFlowInferenceInterface.java
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/android/java/org/tensorflow/contrib/android/TensorFlowInferenceInterface.java
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/android/java/org/tensorflow/contrib/android/TensorFlowInferenceInterface.java
https://github.com/caffe2/caffe2
http://pytorch.org/
https://developer.android.com/reference/com/google/android/gms/wearable /MessageApi.html
https://developer.android.com/reference/com/google/android/gms/wearable /MessageApi.html
https://developer.android.com/reference/com/google/android/gms/wearable /MessageApi.html
https://github.com/ptitiano/cpuloadgen

Mengze Zhu is working toward the graduate
degree in the School of Electronics Engineering
and Computer Science of Peking University,
Beijing, China. His research interests include
mobile systems and machine learning.

Feifan Huang is working toward the graduate
degree in the School of Electronics Engineering
and Computer Science of Peking University,
Beijing, China. His research interests include
mobile systems and machine learning.

Saumay Pushp is working toward the PhD
degree in the School of Computing, Korea
Advanced Institute of Science and Technology,
Daejeon, South Korea. His research interests
include mobile systems and networking.

Xuanzhe Liu is an associate professor with the
School of Electronics Engineering and Computer
Science, Peking University, Beijing, China. His
research interests are in the area of services
computing, mobile computing, web-based sys-
tems, and big data analytics. He was selected as
the CCF-IEEE Computer Society Young-Scientist
in 2018. He is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

330 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 2, FEBRUARY 2020

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 28,2021 at 09:04:17 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

